Sql Build Manager - User Manual

Michael McKechney (michael@sqlbuildmanager.com)
www.SqlBuildManager.com

For: Sql Build Manager v8.6.8

Copyright ©2004-2010

Sql Build Manager is an open source project maintained by Michael McKechney on SourceForge.net

STARTING TOPICS ...eeeeuroracosrosrasasrossasosrossasosrossasossossssossassssassassssosssssssasssssssasssssssassasassassssassassasanss 4
GETTING STARTED eeeuueueeeeeeeeernnnssseceesseesssnsssssssssseessnnssssssssssssssssnsssssssssssssssnnsssssssssssssssnnssssssssssesssnnssnnnnes 4
CONNECTING TO A DATABASE ...eevveeeteeeetreeeteseeteeessesessseesasesesssessasesessesesasesessssessseseasesesnsesessseesssessnsesesnsesanes 4
CREATING YOUR FIRST SQL BUILD MANAGER PROJECT FILE ..c.uveieeureeereeeetreeeereeeetreeeiseeessaeessesessseesseesasseesasesenns 5
ADDING SCRIPTS TO YOUR PROJECT .uuvveeeureeereeesteeeeseeeateeeasseesasesesseesseseasesessesessssessseesasesessessnsessasssesasesens 5
SCRIPT CONFIGURATION: SETTING RUN TIME RULES....uvveeitveeererersreeireeessreeessesessseeesesessesesssesensesesssessnsesesssesens 8
BULK AADD ...ttt eteeeetee ettt e ettt e eeteeeeteeeeteeeetseesbeseesseeeaseeesasesaseeensasesseessesesasaeaaseseseeesatesesseeasteesnseeesareean 9
BULK ADD FROM LIST .. teietieiettieeteecette e et e ettt e eteeesteeeeateeetaeesabeeeseeeasseesnsesessseesaseessaeesasasenseeenseeesnseeeses 10
BULK ADD FROM TEXT FILE vvtievveeiteeeetreeeteeeeteeeeteseeseeeesteeensesesssesesesessesessesessseesssessnsesesssesensesssseeesnsesensens 10
CHANGING SQL SERVER CONNECTIONcccevruesneeeeeeeeeerennsssscsssesessnssssssssessssssnssssssssssssssssnnsssnsssssssssnnnnsnnnnns 11
CHANGE SQL SERVER IMENU OPTION ...eeuvieiteeeetreeeiteeeetteeeetesessseesseeesseeessesessssesssessasesesssessnsssessseesssesessseenn 11
RECENT SERVERS LIST 1.vveeeteeeesteeeseeessreeesesesseeessesensesesssesesesesssessnsesessesesnsesessssesssessnsesessessnsesssseeesnsesensens 11
RUNNING YOUR SQL BUILDS ..euceeceesrasiassesseastaniascosssssrassassossssssassassassssssassassossssssasiassassssssassassansens 12
RUN TIME BUILD SETTINGS «.eeeeeeernnnsssnccssereessnnsssssessssessssnssssssssssessssnssssssssssssssnnsssssssssssssssnnnsssssssssnsssnnnns 12
EXECUTING YOUR BUILD PROJECT cecvuuuusseecesrreernnnsssssessssesssnnssssssssssessssnssssssssssssssnnnssssssssssssssnnnsssssssssnsssnnnns 13
EXECUTING THE FULL PROJECT .. uveieuteeeeureeereeeeteeeeseeessseessesaasesesssesssesensssesasesessseessessasesesssessnsessnsseesnsesensees 13
EXECUTING SELECT SCRIPTS...0eeeuteeeteeesureesseeessseesseeessseessesassasessessssssessssesasesesssesssssssssssssessnsssssssessnsessssnes 15
BUILD LOG INFORMATION.....cietteernnnnssneessereernnnsssnssssssesssnnssssssssssessssnssssssssssssssnnnssssssssssssssnnnsssssssssnsssnnnns 16
BUILD HISTORY...ei ittt eetee ettt cetteeeeteeeeteeeeteeeetteeeteeestaeeaatee e tasessbeseseseassseenseseasseesaseessesessseeenseeensseesnseeensees 16
DATABASE LOGGING .uuveeevieeiuteeeieeesteestteessteesteeessseesssesansasesssesasssansssesnsasasssessssesssssesssessnssesnssessnsesessees 17
BUILD FILE SQL LOGGINGveeiutieetieesiteeeieeestteesteeestteesseeessaeessseesssasessssessesessseesssasssssesnsesssssssssessnsesessnes 17
VALIDATING A BUILD PACKAGEceeeeeeernenseceeseeeeennssssesesseesssssssssssesssssssssnssssssssssssssnsssssssssssssssnnsssnsssssanns 18
BASIC COMMAND LINE EXECUTION ...ccccuroseacosraseacossossscossasescossassssossassssassassssosssssssossassssasssssssassasanss 18
COMMAND LINE ARGUIMENTS eveurueeeeeeeeeeeeanssssseseesessssssssssssssesssssssssssssesssssssssssssssessesssssssssssssssesssnnnnsnnnnns 18
AUTO-CREATION OF COMMAND LINE STATEMENTS eeeuuuueeeeeeeeeerennssseseseesessnsssssssessesssssssssssnsssesssssnnssssnesssanns 19
CONFIGURING THE COMMAND STATEMENT 1...uvveeiuteeeieeertteesiseeessseesseessseessesessseesssessssssessessssesesssessnsesesseenn 19
GENERATING THE COMMAND STATEMENT ...cuvveeeureeeteeeetreeeiseseesseeeseeenseeesseseesseesseesasesessesensssessseesnsesessesnn 22

mailto:michael@sqlbuildmanager.com
http://www.sqlbuildmanager.com/
http://mckechney.com/
https://sourceforge.net/projects/sqlsync/

COMMAND LINE EXECUTION VIA Ul ...eeiiiiiiiiiieiiieieieeeteeeteteteieieteteteestesaeeeseeeseseasasssssnsssssessssssssssssnnsnssnssannnnnas 23

COMMAND LINE EXAIVPLES 1evuuereeserensereasesessssessssesssssessesssssssssssesssssssssssssesssssssssssessssssssssssssssnssssnsssensssses 23
TARGETING IMULTIPLE SERVERS AND D ATABASES ..ceetereresesscsssesasasasesessssssssasssssssasasasassssssssssssasasasasasass 25
CONFIGURING MULTIPLE DATABASE TARGETS «uveuureeceeseeassenssensrescrsserssesssssssssssssssssssesssssssesssssssssesssesssssnnsans 25
MANUAL SEQUENCE ASSIGNIMENT «.eveeeeiieeeeeeieieeeeeeeeeeeeeeeeseeeseseseseeesesesssssesssssesssesesesesesesesesssesesesesssesesesenenes 25
AUTO SEQUENCE LIKE-NAMED DATABASES ...vvuuuuuusssnns 26
CREATE CONFIGURATION VIA A QUERY 1.utvteteeeeeeeeeeeeeeeeeeeeseseassseeeeeessssesassesseesssssasasseseeeessssasssssesseesssessnannnes 27
THREADED MULTI-SERVER DATABASE EXECUTION .vvvuurereserensresseressssessssesasesssssssssssesssssssssssssessnssssssssensssssnss 28
1Y =3 LU= J TR 28

OVERVIEW ..euuuienunirennireesireesiseassieasstsasssrssssreessssssstenssssssssssssssesssssssstonsssensssssssssasssssssstensssenssssnsssensssnes 29

SECTION DETAIL tetttttttttreruueeeueseeeeeeeseessesssssssssesssssesssnsssssssssnsnsnnssnsnsssnnnsnsnnnnnn 30
PRE-TESTING DATABASE CONNECTIVITY 1eeuieeutensrensrencrsneraserasrasseesssessssseassenssssssssssssssssessssrssssssssessssssassensses 35
PERFORMING A REMOTE EXECUTION . ceuuteuieeuiensreusrenerseernserassresseesssessssseassessssnssssssssssssersssrssssssssessssssasssnsses 35

EXECUTION FLAGS . ceeteruusueeeeeeereeerannssneeesseeesssnsssssssssessssssssssssssssessssnsssssssssssssssnnssssssssssssssnnsssssssessssssnnnns 36
LOGGING ceueveeeneererenernnnssssessseessnnsssssssssessesnnssssssssssssssnnnsssssssssnessssnssssssssssssesnnnsssssssessssssnnnsssssssssnssnnnnns 38
COMMAND LINE RETURN CODES ..c.uuuuiirireernnnnssssesssnnernnnsssssssssssesnnnsssssssssssssnnssssssssssssssnnnsssssssssssssnnnsssnnnes 39
EXECUTION RESULT CODES ..vveivveeeteeeetreeeteeeeseeeetesesseeessesesesesssessssseasssesasesessseesnsessasesesssessnssesssseesnsesensees 39
ADVANCED SCRIPT HANDLING ...cuteceusessassssossassssossassssassassssassassssossassssossassssassassssossassssassassssassasassas 40
UTILITY SCRIPTS ..eeeeerueusseaeeseeeeernnnssssesssessssnnsssssssssssessnsnssssssssssessssnsssssssssssssssnnssssssssssssssnnnsssssssssnessnnnns 40
UTILITY SCRIPT EXAMPLE ...uvviietteieteeeetteeeetee ettt eeeteeeeteeeeateeeeteeessseseseeeasseessesessseesaseseasesessseeeseeeasseessesensees 41
SIMPLE TEXT INSERTS 1vvteutteeuteeesreeeitreestseesiseeesssesssesensseessesesssessnsesasssssnsesessssssssessnsssessessssssssssessnsesessenn 42
TOKEN REPLACEMENTS ...eeeuttteeuteesteeesuteesseeessseessesassseesssssssssasssesssssensssesnsssesssessssessnsssesasessssssesssessssesensees 43
SCRIPT CREATION .1euvveeeureeeteeeereeeeteeeaseeeasseesseesessseasseesasesessseessesaasesessseseassseasseseasssesnsessseseasseesasesessseenn 43
SCRIPT WRAPPERS ... tteetteeeuteeestteeetteestseesseeesssasssssesssessasaseasseesssaeansssesnsasasseesssaeansssesnsasesseenssesssesesssennn 45
SCRIPT MANIPULATION AND OPTIMIZATION......eeeiteeeeueeeetreeeereeesseeeeseeesseeesasesessseesssessasesesssessssssesseesasesesseenn 47
SCRIPT POLICY CHECKING .eevvvesueeeeerereeennnssneeceseeessnnssssssessessssssssssssesssssssnsnsssssessssssssnsssssssssesssssnnnnssnssssanns 49
MANUAL POLICY CHECKING OF BUILD PACKAGEuvveeetveeireeeteeesreeeiteeessseesiseeessseesseesssseessessssssesssesssesensnes 49
GRANT EXECUTE POLICY ..uviiitieeetreeeteeeette e ettt eeteeeeteeeetteeeteseeaseeenseseeseeesntesensseeesseeesesesnseeesseensseessesensreean 50
GRANT EXECUTE TO [PUBLIC] POLICY ..ettteeieeeeeeeettteeee e e e e eeitteee e e e e e e eessaveeeeeseessenssbeeesesesssnnnssseseessesessnsrenes 50
WITH (NOLOCK) POLICY .uuveeecereeeieeeeiteescteeeeteesiteeestteesetesessseesasesssseesnsesensseesssasasssesnsessnsssesssessnsesessenns 50
RE-RUNABLE SCRIPT POLICY ..evveieteeeetteeeteeeeteeeeeteeeeteeeeteeeteeeesseseseeessseessesessseesnseesasesesnseseseeeasseesnsesenses 51
QUALIFIED TABLE NAMES POLICY ..veiiuvveeetteeecteeeetteeeeteeeeteeeeetesessseesseeeaseeesssesensseessseseasesesnseeensesessseesasseesaseenn 51
COMMENT HEADER POLICY ..ttt ettee ettt ettt e eteeeetteeeeteeeetteesteeesaseesasaesssaesnsasensseesssaesnsesesasesesssenssesssesenssennn 51

STORED PROCEDURE PARAMETER POLICYetttiiiiiiiiiiteteeeeeeeiiirteee e e e e eeibeteeeeeeessnnreeeeeeesesannneeeeeeesesannnnnes 51

DIRECT DATABASE OBJECT SCRIPTING suvurueuesesssasssesesesessssssssssssssasassssssssssssssssssasasasassssssssssssasasasasasass 52
SCRIPTING DATABASE OBJECTS «veuurereeereenseenseessessersssrsssessssssssssssssesssssssssssssesssessssssssssssssssssssnssenssansssssnnnes 52
UPDATING SCRIPTED OBJECTS.1euureutreecreseeaseeassesssessessersserssssssssssssssssssssssssssssssssssssesssesssessssssssssssssssnsssnsses 54
CREATING A “BACK OUT PACKAGE” ..c.etuurteireereerresseessensesssessssssssssrsssssssssssssssssssnssenssenssesssssssssssssssnsssnssnns 55

REPORTING AND ADHOC QUERIES «1eceuesresesassssesesssassosasssnssssasssassssassssssssassssssssasasnssssssssassssssasnsassases D7,

SCRIPT STATUS REPORTING ..euuuieueuirenssreeserenssrsussienssssasssrssssresssssasssssssssasssssssssssssssnssssassssassssssssssnssssnssssas 57
OBJECT COMPARISON REPORTcuuiiiutiieniiieiieeireasiieesieeeireasiteesireassteasseasssrasssraessressssensssensssensssennssnes 59
RUNNING ADHOC QUERIES AGAINST MULTIPLE TARGETS ..reuressresseessansrassrassrasssnsssssrsssrassrsssrsssssssasssasssasssnsses 61

STORED PROCEDURE TESTING eeueereseceseusesesasessssscassssssssssassssssssassssssssasassssssssassssssasassssasasasassssssnsasss O2

STORED PROCEDURE TESTING-SETUP......uvveeeeeerureeesesssseeesssssseessssssssssssssssesssssssesssssssssssssssssssssssssesssssnnsesses 63
STORED PROCEDURE TESTING - EXECUTION (MANUAL AND AUTOMATED)...c.uveeeerseeeerseeesssesesssneesssssessanesssnsennns 67
RUNNING YOUR STORED PROCEDURE TESTS (MANUAL)......cvveveeveeteeteetesteeeseeseeseeseeseeseesessessessessessessesesssesesseens 67
INTERPRETING THE RESULTS ...v.uveuveuveseeseeseeseeseesesessensessessesseseesesssssessensessessessessesssssssessessesensensessesssssssessesses 67
SAVING THE RESULTSvvteveeveeeteseestestessessessesessessessessessessessessssssssasessessessessessessesssssssessesessensessensesessessenes 68
AUTOMATING STORED PROCEDURE TESTING «eeeeuvvveeerersseeeesssssseesssssssessssssssssssssssesssssssssssssssssssssssssesesssnnsesses 69

ADDITIONAL PROGRAM INFORMATION .eueeeesesesesessnsssesasasssssasasasasassssssssssssssasasssassssssssssasssssssasasasasss OO

ASSOCIATED FILE TYPES.ceuuiteuuireneireaniireusereeerensirensereaeietssseressersssistssssessserssssressesessssrssssrsssersssssensssenssenes 69

DATABASE ANALYSIS teeuesrerecacessasasasessssssssasassesssasessssssassssssssssasssssssssssssssssasassssasssasassasssasassasasasass 74

DATA EXTRACTION c.uutvuureneerenssrenessensssrsssssssserssssssssssensssssssssassesanssssssssensssssssssessssenssssnsssenssssansssensesansnns 73
DATA INSERTION SCRIPT CREATION ..uveeueeeessereeseresseressssesssssssssssssesssssssssssssssssssssssssessssessssssesssessnssssnsesansens 74
DATABASE OBJECT VALIDATION &1evecesesesessssasssssssssasasassssssssssssssasassssssssssssssssssasasssssasassssssssasasasasasass 75
REBUILDING PREVIOUSLY COMMITTED BUILD PACKAGES ..uvueueeesecesasesesesassssssssasasasasasasasassssssssasasasasasass 77

ENTERPRISE / TEAM SETTINGS ..eeuuueeesserenssenensnsesssesensssnsssssessssssssssssssssessssssssssssssssessssssssssssssasanssssse 78

ENTERPRISE/TEAM SETTINGS CONFIGURATION FILE .veeveeiveeiireereeteesteesteessesseesseeseesseesssesssessseesseessesssesssnnnns 78

APPSETTINGS KEY/VALUE PAIR «.eevvveieiieeeeeeeie ettt e e e ettt et eeeesesesasseeseeessssassssseseesssssassssseeeessssssssrssseeessssnnns 79
SCRIPT CHANGE SETTINGS . eueeetereseesesessasesessssesassssessssssessssssessssssesssssssssssssesssssssssssssessssssessssasessssssassssnsases 79
TABLE CHANGE W AT CH e tetete ettt et et e e e e e e e e e e e e e eaa e s e s e ea e s e sa e sasensnsnsenssnsnsansensnnanssnsenssesnsenseasnnenns 79
CONFIGURING TABLE CHANGE W ATCH ettt it ettt ettt et e ee et s e ee e e st s e s e seaa st sennsansenstnssnnsansenesensennsnnsenns 80
SCRIPT POLICY SETTINGS 1uvueeetereeeecesessasesessssesassssessssssessssssessssssesssssssssssssesssssssssssssessssssessssasessssssassssnsases 80
FEATURE ACCESS SETTINGS t1eutereecereseacecessacesessssessssscessssssessassssssasessnsassssns 81
Starting Topics
Getting Started

Connecting to a database
Sql Build Manager requires a connection to SQL Server to start. This is because 99% of its functionality
needs a live connection to work.

1. To get started, run the Sqgl Build Manager.exe to bring up the connection window:

nitalize Sql Server Connection (%]

Sql Build Manager @

SCIL Servers

|IDcthast w |

Uszer Mame

Pazzword

Uze "Windows Authentication

d:,‘ Registered Servers
4 Development
-3 Production - Primary

Ready

The SQL Servers dropdown will scan your network for broadcasting servers. Once it has done
this it will populate the list. If you don't want to wait or know your server name anyway, you can
just typeitin.

You can also maintain a list of commonly used servers in the registered Servers list at the
bottom. To do this, right-click on the Registered Servers icon and use the pop-up menu to guide
you.

2. There are 2 authentication options, Windows Authentication or SQL Server authentication. By
default, it will use Windows Authentication. To enter a SQL Server ID and password, just
uncheck the box. Now that you're ready to connect, click "Connect" (Don't worry, you
can after the application is open)

Creating your first Sql Build Manager Project file

To get started, you'll want to create a project file to store your scripts and the run configurations. You
have two options when working with Sql Build Manager projects:

Sql Build Manager Project File (.sbm) — this is a single self contained file that will hold all of your scripts
and script runtime metadata. The benefits of this type of file is that by having only one file to manage,
you maintenance and sharing of your scripts if simplified. This is especially recommended if you need to

hand off your packages to a separate group for deployment.

Sql Build Manager Build Control File (.sbx) — this file just contains the run time metadata for your scripts.
The scripts are kept “loose” and are saved in the same folder as the .sbx file. This option works well

when you want to track your scripts in source control as the text changes will be captured (vs. the binary
format of the.sbm file). You can convert a .sbx file into a .sbm file for deployments using the Action 2>
Package Scripts into project file (.sbm) menu option

1. Use the Actions - Load/New Project File (*.sbm) or the Action > Load New Directory
Based Build Control Files (*.sbx) menu option to open the file dialog. Navigate to the directory
you want the file created and name your project. Just click the "Open" button to create the

project shell.
Sql Build Manager

s=|list % Seripting 5 Logging S Tocls T
.j' LoadiMew Project File (%, sbrm)
j Load/Mew Directory Based Build Contral File (*,sbx)

m

Now you're ready to start adding scripts to your project file. See "

Adding Scripts to your project
There are 2 basic ways to get your scripts into a project: by or
, but there are several methods to get access to these:

® Right-Click in the Build Scripts section and select one of the "Add New..." options

http://sqlsync.googlepages.com/changingsqlserverconnection

S Edit File

= ‘ —
%5 Add Mew Sgl Script (Text) Crl+M
| Add New Fils y
\h_ —

M ke s Takle Ol akFe Tl b
i
']

e From the Actions menu, select one of the "Add New..." options

-7 Action | =3|List %9 Scripting = Logaing %Tools |
4 ,_“j‘ Load/Mew Project File (¥, sbm}
j Load/MNew Directory Based Build Control File (*.shx)

Change 5ql Server Connection

Settings

gl
@ Add Mew Sql Scripk (Text) CEF[+M
(=%

Add Mew File

-

ﬁ Import Scripks From Sql Build Export File

Compare Build File To...

e Perform a Bulk Add via the "List" main menu option - see Bulk Adding Scripts for details

Sql Build Manager
-7 Action | == Lisk @ Scripting = Logging %Tools ._-':) Help

Settings | 34 Find Script by Mame Chrl+F
Server:

Project

Find Again F3

o
fi it

Build Scrip é_:| Re-number Build Sequence
b=

Seq # Resort Build By File Type !
L' 1000 Expart Build List for Documentation 3 }
. Bulk add
Bulk Add From List

Bulk Add From Text File

Cleat "Previously Run' Blocks for Selected Script

e Drag and drop files from windows explorer onto the Build Scripts section

e Dragand drop list entries from one Sqgl Build Manager instance into the Build Scripts section of
another

Each of these methods will then prompt you to configure how you want the script to be run and against
what database.

Adding an Existing File
To add a pre-saved script file, you will select one of the "Add New File" menu options. This will present a
dialog window for you to select the script to add. By default, it will fiter for .sql files, but you can filter

6

http://sqlsync.googlepages.com/bulkaddingscripts

for any number of types, and of course an "All Files". After you make your selection and click "Open" you

will need to to determine how you want it to run.

Add Script File to Build

Lock i | £ My Documenis x| - Bk
¢ i | T LE S g CDViad e i
My Recers) Erinmnt ol gy D Uit il 2000
DS ‘_J[A'. Vo M _Jm
E e Sitmp.sq
COeEs
Desktop éhﬂ L
~ QM Tl e
J éh: T -
LR
My D: a
ufb--m‘
o’)p...a—
@ ‘mp-.u.n.
My.C : 3 L
LGRS e manent i
My Network File name:
Places
Files of type:
reript dunoc.: (Pre-run scripts onl?'. g'e?vg:foi;ﬁks
ing on Ovarride Target Change (will £140) st abce User Fias v
Adding Script Text

To add a script that you will type or paste into your project file, you will select one of the "Add New Sql
Script (Text)" menu options, or use the hot-key "Ctrl-N". In this form, you will need to add a script name,
the script itself and then Configure your Script to determine how you want it to run.

Add SOL Script Text

®

Script Name <F1>:
Target O8: [adventureworks | Build Sequence #: 6 Seript Time Out (seconds): [20 Tag: | > ¥
Description: I
¥ Roll back entire build on failure ¥ Strip Transaction References
1 back file contents.on parti [Allow Multiple Commated Runs on same Server
Save] Cancel I
Find: | ¥ Next A Previous [Match Case
Added By: AddDate: LastModBy: LastMod Date:
Script Id: ISHAI Hash:

http://sqlsync.googlepages.com/scriptconfiguration
http://sqlsync.googlepages.com/add_newfile.png/add_newfile-full;init:.png
http://sqlsync.googlepages.com/add_newfile.png/add_newfile-full;init:.png

Script Configuration: Setting run time rules
No matter how you add a new script to your project file, you will need to configure your run time rules

for that script. There are 10 different attributes you can add to a script that effect it's description and
runtime.

e Script Name - basically, what it will be called! (Only available if you add via the New Sql Script
(Text) option)

e Target DB - what database this script will be run on when the package is executed

e Build Sequence - determines what order, in relation to the other scripts in the package, this
script should be executed.

e Script Timeout - Set the time (in seconds) of how long Sq/ Build Manager should allow the script
to run before terminating it and considering it failed.

e Tag - a short descriptive name used to group scripts (does not affect run order)

e Description - an optional long description of what the script is and what it's for.

e Roll back entire build on failure - A key feature to the tool. This tells the tool to roll back all of
the changes should this one script fail to execute properly.

e Roll back full script file contents on partial failure - should you uncheck the above; you then
have the granular option of how to handle a failure. If this script contains more than one
command, you can tell the tool to roll back all of the commands or ignore the failure and keep
on going.

e Strip Transaction References - many times, scripts generated by other tools will contain
transaction commands. By selecting this, you tell Sq/ Build Manager to take those out and be the
sole handler of transactions *it is recommended that you leave this checked for table schema
and data update scripts!

e Allow Multiple Committed Runs on same server - because Sq/ Build Manager records a log of
committed package runs, it can tell when a script has already been run on a server. It the script
is constructed to allow running again (a Stored Procedure update script for instance), you can
check this option to have it execute again.

http://sqlsync.googlepages.com/addingscripts

Configuration widow for "Add File" and "Bulk Add" options
File Name: trp.sql

Added By: mmckechn AddDate:

Last Modified By LastModDate:

Target Database: Buld Sequence §: Time Ot (seconds): Scrpt Tag:

|Bdventureworks 3 ﬁ f20 [l]
Script Description:

[V Roll back entee budd on fahse
w

v Slnp Tranzaction References

v Alow Multiple Committed Runs on

same Servel ok I

Configuration window for the "New Sql Script (Text)" option and whenever editing an existing script.

Add SOL Script Text 3]
Script Name <F1>:
TargetDB: [adventureWorks v| Build Sequence #: |5 Seript Time Out (seconds): [20 Tag:| 5] @
Description:
W Roll back entire build on failure ¥ Strip Transaction References
| Hilecgn . I~ Allow Multiple Committed Runs on same Server

When editing an existir'm.g file, these configuration options are hidden in the new window. To display
them, use the double arrow icon on the right side of the window.

Bulk Adding Scripts

There are 3 ways to bulk add scripts into your Sql Build Project file, all accessed via the List menu item:

+ Sgl Build Manager,

-7 Action | 22| List @ Scripting =] Logaging %Tools t'._?) Help
Settings | 334 Find Scripk by Mame Chel+F i
g:;;::t: aﬁ Find Again F3 L
Build Scrig Q Re-number Build Sequence 1
Seqtt ? Resort Build By File Type _(

|/ 1000 Export Build List for Documentation »

" Buk Add
Bulk &dd From List

Bulk Add From Text File

Clear "Previously Fun' Blocks for Selected Script

Bulk Add

This menu option opens a standard windows "File Open" dialog box. From here, you can select multiple
script files to add by holding the <Shift> or <Ctrl> buttons as you click them. Clicking "OK" will then
present you with the script configuration screen.

Bulk Add From List
This menu option opens a dialog box where you can type or paste in a list of files (with full paths) that

you want to add to the project file. Simply add them, one per line, and click the "Add Files" button

Bulk Add From List ®

Copy file names [one pei line)

C:l\update sciptl.sql
C:\tempinsest sciipt2 saf

AddFies | Cancel |

Next, you will see a confirmation screen. This step is added in case you are trying to add a script that has
the same name as a script already in the project file. If you do, that item will be shaded and with the
radio button options, you can choose to add a new entry or re-use the existing one (in either case, the
script that is already there will be overwritten). You can also choose to "Cancel", or uncheck those files if
you have added them in error. If you click "Add Checked Files" you will be presented with the script

configuration screen

Bulk Add Confirmation 3]

Fie Name | Curent Path |
[update scrpt! sql C\update scriptl.sgf
[insent sciipt2.2q! C:\Memphinsert scipt2. sql

* Colored items denote pre-existing files

% Use current script entry for existing file " Create new script entry for existing files

Add Checked Files Cancel

A

Bulk Add From Text File
Very similar to the Bulk Add From List option. Instead of typing or pasting in a list of files in the screen,

this option will pull the list from a text file for you. Just format the file with one file name per line. You
will get the same confirmation screen as above with the same options, and then be presented with

the script configuration screen

10

http://sqlsync.googlepages.com/add_bulklist.png/add_bulklist-full;init:.png
http://sqlsync.googlepages.com/add_bulklist_confirm.png/add_bulklist_confirm-full;init:.png
http://sqlsync.googlepages.com/add_bulklist.png/add_bulklist-full;init:.png
http://sqlsync.googlepages.com/add_bulklist_confirm.png/add_bulklist_confirm-full;init:.png

Changing SQL Server Connection

When you started the application, you needed to connect to an instance of SQL Server. You can change

your active connection after the tool has started as well. There are 2 ways to accomplish this:

Change SQL Server Menu Option
The first is from the Action menu 'Change Sql Server Connection" menu option. This will display the

same connection window you saw when the application started. It will again enumerate the SQL Servers
that are broadcasting on your network, but you can also type in the server name if you'd prefer or if

your server isn't broadcasting or select from you registered servers list.

Sql Build Manager

ction | List

h=d

Scripting

Logaging

Tools Help

%

Load/MNew Project File

l Change Sql Server Connection

ckechn*

Setrinns

Recent Servers list

Another option is the "quick change" selection in the "Recent Servers" dropdown. This list is populated
with the last 10 servers that you have connected to and by simply changing your current selection; you
will change the target server. In both this case and the Action menu option, the new server name will

display in the header section.

nitalize Sql Server Connection

Sql Build Manager 5§

SOL Servers

| localhost v |

Uzer Mame

Paszsword

| |
Use Windaws Authentication

[E¥] Fegistered Servers
4 Development
-3 Production - Frimary

Ready

RecentServers: l'OCBlhOSt

localhost
(local)

CORPDEVT1IT7Z7

11

—

http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png
http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png
http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png

Running Your SQL Builds

Run Time Build Settings
At run time, there are several settings you can use to change how the build file is executed against the
server.

Build Type
There are essential 3 different ways to run the project against the server: Trial, Full/Commit and
Partial

Trial

In trial mode, the build project will be executed, but when complete, it will roll back the entire
project. This allows you to test against a server in advance to make sure that all of your scripts
will execute properly. The settings that will run a trial are: Trial and Trial - Partial.

Full/Commit

This is the setting to use when you want the package to commit its changes to the server upon
successful completion. (Of course, if any script fails, the tool will automatically roll back the
changes - after all, that is the point of the tool :-). The settings that will perform the commit
are: Development Integration, Quality Assurance, User

Acceptance, Staging, Production, Partial and Other. The only difference is actually just the label
that gets applied to the log that you can use as per your processed.

Partial

This setting, generally the least commonly used, works in conjunction with the "Partial Run Start
Index" text box. This allows you to specify a starting mid-point,but run index, of the scripts to
run. The settings for this are: Trial - Partial (will roll back upon completion) and Partial (will
commit upon completion)

Target Database Override

There may be times during your development cycle, where you will want to temporarily change
the target database for a script (for instance if your development environment has various
versions of the database with different names (AdventureWorks vs AdventureWorks _Copy for
instance). This drop down, when set, will use the override value for the build execution.
Whenever the tool encounters a script that is configured for a default target that has an
override set, it will use the override instead.

12

Build Manager / Run Settings

Build Type: |Tria| v| Partial Run Start Index: EI

Target | Default Target Override Target {optional)

Database

Override: AdventureWarks | b
AdventureWworks ~

Adventurewiorls Copy
Adventurewarks_CopyZ

Description *: master
= rmodel
Please Enter a Descriptionimsdb 3
. . . : ZqlBuildTest
Advanced Runtime Settings (use with caution) == termpdb "

Description

Before you start a build execution, you will need to enter a description. This is used as a brief
explanation of why you are updating the database and is kept in the log. Once some text is
entered, build link becomes active, as "Start Build on "(server name")

Executing your build project
Now that you've added your scripts, configured them how do you actually execute your scripts? You're

only a few quick steps away...
Executing the full project

Confirming target SQL Server

Before you kick off your scripts, check to make sure you're running them where you want. You can verify
the server you're currently connected to via the header section; both next to the Server label as well as
in the Recent Servers dropdown box (this drop down is a quick way to switch your connection to

another server)

-+ Sql Build Manager

-7 Action == List @ Scripting F Lagaing @Tools @Help

| —
Settings
9 Recent Servars:

Project File:ci"Docurments and Settings\mmckechnyMy Documentsitest.sbm

Set Run Parameters

Set your run parameters accordingly (see here for full details), including the build type, the target
database overrides (if applicable) and a build description (this becomes part of the log). Once these are
set, the disabled "Please Enter a Description" link will change to "Start Build {Server Name}" and become
active. Click this and your off and running!

13

http://sqlsync.googlepages.com/buildloginformation

Build Manager / Run Settings

Build Type: Trial [Partial Run Start Index: I:l
Target Default Target Override Target (optional)
Database

Override: AdventureWorks Adventurewarks

Description *: | |

Flease Enter a Description

Advanced Runtime Sethings {use with caution) <=

Lag Target Database: | v| Run Build without a Transaction []

Advanced Runtime Settings: Log Target Database and Run Build without a Transaction
By default the Advanced Runtime Settings section is hidden. This is because generally, you don’t want o
use them. However, if you need to, they are there.

Log Target Database: By default, Sql Build Manager logs the execution to a SqlBuild_Logging table in
the target database. However, if you need it to log to a different database for some reason, use this
drop down selector to pick that database (note: it needs to on the same server instance). This does limit
the tool’s ability to determine the script’s run status.

Run Build without a Transaction: One of the key features of Sql Build Manager is that it runs the build in
a single transaction and if there is any failure all of the scripts are rolled-back, leaving the database in a
pristine state. You can turn off this protection with this checkbox. User beware however, because now
you’re just running scripts individually and if there is a failure, all scripts that run before it are still
committed.

Running / Seeing the progress
Once you click the link to start the build, several things happen:

= The current status in the bottom status panel changes to "Proceeding with Build"

= The Build Results list is populated as the scripts are run, verifying the run order, the target
database it was executed against and its status.

= A "Cancel" button becomes visible. Clicking this will, of course, cancel the build execution and
roll back any changes made

14

Build Scripts Build Manager
| Seqtt | SciptFie | DatsbaseMame 1 Tag | | euddType: | <] Partisl Run Start Index: |
v ; Ak ot % o Adveriudniods 7“9;‘.“ Default Target Override Target {optional)
v Voo b o o 4 Datal
i w::: Ovarride: AdventureWorks_Copy !
ol T i N - Adveriedaoks
Vi e i Fdveodaowoks Description *: I Cance!
Build Results
Seqd | Sorek Fin | Datakass Name | Origs | Status free |
s T i g Adverturends S Rurreryy Sergt
4 TR e Adventurenio. 4 Scrgt Successid 000007
3 IR A A T . AdverbreVo.. 3 Scrgt Sxccesatd 000003
2 PR A e e ey AdverbareWbo.. 2 Scrgt Successid 000018
1 P et R Agverbureio. 1 Scrgt Successiul
W Chedk for script chfinges (Pre-run saipts anly, may stow Bstrefresh) ”
¥ Update Icont on rride Yarget Changae (will slow Nstrefrosh)
Stahus [eon Hebp ground Colee Help
Procosde with Buld Buld Duration: Scrigh Durption (sec): 0

Once the build completes, either successfully or with an error, the final status of the build is shown in
the status panel. The example below shows a script failure, which highlights in red and the status as
"Build Failed and Rolled Back". To determine the failure, or see the results of any script that ran, you can
right-click on that item in the Build Results list and select "Display Results". The pop-up window will
display the SQL Server message and any errors.

Build Results

Failed script highlighed in rm/"

Right-Click on list.item to.
display resuits of the.
scriptexecution

WV Ched forroiptchanges (Prevrun seripts only, may slow kst refresh)
¥ Update 1cons on Override Target Change (will slow st cefresh)

Ktz ioon Melp Background Color Melp

éF““WM 2 Buld Duration: 00:00:01 Script Duration (sec): |

Executing select scripts

If you don't want or need to execute the full build project from start to finish, you don't have to. From
the build scripts list, you can select one or more scripts and Right-Click to display the menu. Two options
are "Try Script against Database (Rollback)" and "Run Script against Database (Commit)". These do
exactly what you'd expect them to do. Note that they will use any Override Target setting you may have
set in the "Build Manager" section.

15

Build Scripts Build Manager

| Seq#t | SciptFie | DatabaseName | Tag | | | Buitd Type: [Trial
L1 AudMate Tatlesd Advenireworks Target s
g2 Petson Address Audi Table sl AdventueWorks Database 7
/153 Petson Address Sudi Triggees. s Advertueworks Overrido:
¢ Tseec . i
il 5 —_
L B
EditViews Script Budd Detad
| @ Add New g Script (Text) i
| @ AddtewFie)

| 4m Export Selected Script Entries
i)(Remaove Fla(s)

¥ Try Sapt spsnst Datsbase (Rolback)
I‘\) Run Script against Database (Comenit)

¥ Checkforzariptchanges (Presrun scripts onl |
¥ Updatelcons on Override Target Change (wi

Stotus iconHelp Badkground Color Help

Just like a full build, you will get the status update in the "Build Results" section and the final status in
the status bar.

Build Log Information
Sql Build Manager keeps both an internal (resident in the project file) and external (resident in a logging
table on the target database) logs of build runs. Their contents and uses differ significantly. .

Build History
The internal logging is called "Build History". This records the information about a build run:

e Startandendtime

e Server run against

e Description entered by the user

e Build type

e Final status (committed, rolled back)

e User id of the person that executed the run

7 Review Past Bullds

Busld List

St End SecverName Descrpticn Buld Type Final Stats User'd

W22 1PN 10/22/2007 123 P4 e e Sege Fle Pons RotedBiack M=

W22/2007 1 23PN 10722/2007 1 238 R R Sigde Fle Pana Rotedtack Mas

W22/2007 1 2 PH 10/22/2007 123 PN Wnsw s uEs Sege Fle Pana Commized Mot

W07 1286 PN 10222007 1 25 P RTINSO IN Sevde He Ted TeaFoledBack NN

Build Detods.

Féa Nowa Raoks Order Dutabase Rat ind Success Foertan An D

G Aot [y T TR G, VT | N/222007 119PK | 10/22/2007 119 PR) |o70ss00s7266D. . | $1s0cees Tels
10222007 119PM | 10/22/2007 119 PR o Fekder Ha s

In addition, it captures details about each script that was run. The three most useful data points
collected are:

16

http://sqlsync.googlepages.com/history-main.jpg/history-main-full.jpg
http://sqlsync.googlepages.com/history-main.jpg/history-main-full.jpg

= Results - the text response from SQL Server from the execution of the script. This is especially
useful when there is an error in the script to help you pin-point it. To view the results in a bigger
window, select the script line and right-click to

= Success - an indicator as to whether or not the script ran successfully
= File Hash - a SHA1 hash of the script run. This can be used to detect file changes.

Saving build history to external file.

If you need to save off the build history for a build or a series of builds, you can do that too. While you
are in the build history window above, simply select one or more rows and right-click. Then simply select
the menu option "Save Build Details for Selected Rows". You will be presented with a Save File dialog
so you can save off the detail. This detail is saved in an XML format so you can read it and also easily
parse it if you need to.

Note: unlike the "Archive Build History" menu option on the main screen's "Logging" menu, this option
does not remove the build history that is stored in the Sql Build Manager project file - instead it saves off
a copy.

Database Logging

Sql Build Manager logs all committed transactions to a table in the target database called
SqlBuild_Logging. This allows the application to set the appropriate indicator icon in the script list and
also allows the application to be able to reconstruct a build project file from database records (via the
Tools = Rebuild Previously Committed Build File menu option). This log is much more detailed that
the build history and includes:

= Script Name

= Script ID (unique identifier for the script)

= Script File Hash - a means to detect changes between runs
= Commit Date

= Script Text - allows for rebuilding of the script if needed

» Plus more...

Build File SQL Logging

A final option for logging is the creation of a SQL log - a file that contains all of the scripts included in a
build, in the order that they were run (including use statements for their target database) as well as
comments noting the source of the script. This log is formatted such that it is a fully executable SQL
script and can be run independently from any SQL query window.

By default, this is turned off, but it can be set via the "Action > Setting = Create SQL log of Build

Runs". These logs can be retrieved via "s" menu.

17

Caution! Having this set all the time can cause your build file to bloat quickly and unfortunately can slow
the general processing of the file. However, it can be useful is used judiciously.

Validating a Build Package

Often, you will need to “turn-over” your build package to another group for implementation. In doing
so, you want to make sure that the package you turned over doesn’t get changed or mixed up with
another one. Since the SBM file changes after each execution (the history is saved), the file hash of the
SBM file is an unreliable signature. To solve this problem, you can use a hash calculated off the scripts
themselves. You do this by loading up your build package, then selecting Tools - Calculate Script
Package Hash Signature menu option.

This will open up the Hash Signature window with the calculated SHA1 hash of all the script files
together. You can use the Copy button to grab the hash value for publishing. The hash value will not
change unless there is a change (no matter how minor) to the scripts.

- |
% Tools | %/ Help

Database Object Validation

Stored Procedure Testing

Database Schema Scripting

Code Table Scripting and Auditing

User Data History and Audit Scripting
Data Extraction

Create Scripts from Extracted Data Script Package SHA1 Hash Signature X

The Hash Signature can be uged to werify that all scripts included
if a build package are unchanged.

B F 4 G B 30

1l Database Analysis

Auto Scripting L By corss referencing a published Hash Signature, the recipient of

abuild package can enzure that the soripte have not been altered.

&EE Rebuild Previously Commited Build File d

& Construct Command Line String | Signature Value:
])] F AE22DD7EES1061548E FACCEDCO00OFFEEZAMBZDY
@‘ Script Policy Checking
| 24 Calculate Script Package Hash Signature | 9 Copy] [Close
TS0

Basic Command Line Execution

Command Line Arguments

Sql Build Manager can be run directly via command line or through the SqlBuildManager.Console.exe
helper application. The advantage of using the "console" application is that you will be able to record
exit code values as well as stream the standard output and error text into any automation or scheduling
software that you may be using.

In either case, the command line arguments are the same:

*= /build="<.sbm file name>"
Lets the tool know that you want to run a Sql Build using the specified .sbm file. This is not used
alone, but in conjunction with a "/server" and/or a "/override" argument.

18

/server=<server name>

Designates the target server to run the .sbm file against. Used in conjunction with "/build"

/override="<.multiDb file name>"
Sets the pre-configured multi database/server configuration to be used along with the .sbm file
for the build run.

/override=<default database>,<Override database>

Defines a one-time database override setting where the override database is used where ever
the default database is found in the .sbm file configutation. A "/server" and "/build" argument
set are also needed.

/auto="<.sglauto file name>"
Used independently of the above, this is used to script the database(s) defined in the Sql Auto-
scripting file.

/test="<.sptest file name>"
Sets the Stored Procedure test configuration to execute. Used in conjunction with "/server",
"/database" and "/log" arguments.

/database=<database name>

Sets the database to execute a stored procedure test configuration against.

/scriptlogfile="<script log file>"

Allows you to set a destination, outside of the Sql Build Project, where the SQL script log will be
saved. This can be useful if you need to store that information in a particular location for
auditing.

NOTE: There are special command line arguments specific just for threaded multi-database execution

Auto-Creation of Command Line Statements

To simplify the creation of a command line execution, the application offers a user interface to create a
command-line for you. You can then either copy this statement to be used later, or use an execute
button to kick it off then and there.

Configuring the command statement

From either the Tools - Construct Command line string menu item of the main form or the
Action - Construct Command line string menu item from the Multi Database Run
Configuration form you can open the creation window.

19

http://sqlsync.googlepages.com/multi-databaseserverexecutions

+ Sql Build Manager

-7 action == N | % Taols |2 Help
Settings @ Database Cbject Yalidation
Server: ({local)
. t]| Stored P dure Testi
Project File: (select / create project) e
Build Scripts .EI Database Schema Scripking
Seq#t | Script File EI@ Code Table Scripting and Auditing
User Data History and Audit Scripting
1| Data Extraction
g) Create Scripts from Extracked Data
pj Database Analysis
Auko Scripting 3
,;Da Rebuild Previously Commited Build File
| g Construct Command Line String |

Script Policy Checking

4] Multiple Database Run Configuration

L

E

ELA K

-7 Action Reports

N

Load Configuration
Save Configuration

Load Configur ation via Query

Add Another Server Configuration

5

Canstruct Command Line String I

b

2. The Command Line Builder form will give you options for each setting.

20

F

A" Command Line Builder g@@

Run Settings Threaded Fun Logging
Fiun riulti-database as threaded Log File Farmat HTML w
[] Run as Trial [rollback) mode Rioot Logaing path | |
[] Run builds without transactions
Dezcription |

Script Source

Sql Build Manager Package [.sbm) |c:\Documents and Settings\mmckechn'bdy Documents'\Adwventurebiorks Auditsbm |
Script Source Directony | | I3

Owerride T arget Settings
Target Owerride Settings [multiDb or .cfg) |CZ'\DDCUITIEI‘1tS and Settingsimmckechn\My Documentshadventure. multiDb |

Databaze Authentication Settings Alkernate Logaging Databaze

[#] Use Windows Authentication User Name: I:I Password: I:I | |

) . [Construct Command Line l
Caommand line string:

Execution autput:

S —

e Run Settings — How do you want the execution to run

o Run multi-database as threaded — sets whether or not you want the tool to
thread out the execution. This is checked by default since this is the biggest
benefit of running via command line

o Run as Trial (rollback) mode — sets whether or not you want database
changes to commit when completed. If checked, all scripts will be rolled
back and leave the target database unchanged

o Run builds without transactions — allows you to run the scripts without
transactional protection. WARNING! Using this setting will mean that if a
script fails, all previous scripts will still be committed and your databases
will be left in an inconsistent state

o Description —the description of your build. Any comments you want to add
regarding this execution.

o Allowed Timeout Retry Count — Sets how many times the build can be
retried is the SQL Server error message is “Timeout expired”

e Threaded Run Logging — when running in a threaded mode, how do you want to
create the log files

21

o Log File Format — HTML or Plain Text. Obvious. The HTML format allows you
to link from the base log files (commits.html or errors.html) to easily locate
the specific database run logs

o Root Logging Path - the base folder that you want the log files and sub-
directories to be created

e Script Source — where are the scripts that you want to run? You can only populate
one of these options as a time.

o Sql Build Manager Package (.sbm) — command lines can only be run from
.sbm compiled files, vs .sbx files. This will be the location of the .sbm file you
want to use. NOTE: this will be auto-populated with the path of the .sbm file
that is loaded in the main form if applicable.

o Script Source Directory — if you want to run un-configured scripts that reside
in a folder, you can point this to that directory path. By doing this, you lose
the advantages of configuring run-time settings for scripts.

e Override Target Settings

o Target Override Settings (.multiDb, .multiQbQ or .cfg) — the location of the
config file that lists the servers/databases that you want the multi-database
run to execute against.

e Database Authentication Settings

o Use Windows Authentication — when checked, the connection to the
databases will use the windows account being used to run the execution as
the authentication to the databases

o UserName —enabled if Use Windows Authentication is unchecked. The SQL
Server user to use for the connection.

o Password — enabled if Use Windows Authentication us unchecked. The SQL
Server user’s password to use for the connection.

e Alternate Logging Database - if you select alternate database logging (generally
NOT recommended as it reduces the effectiveness of the logging) this is the name of
that database.

Generating the Command statement

Once you have applied all of your settings in the form, you can click “Construct Command Line”. The
form will validate that you have populated all necessary settings and configured your options properly. It
will not validate that file paths are correct and files exist (this is because you may want to set up a
command line not relative to where you are setting it up). The generated command line string will be
populated into the box below the button. Also, the “Execute” button will become enabled.

22

Conztruct Command Line] [

Command line string:

"C:wProgram Files\M ckechney. comtSql Build M anagersSqlBuildt anager. Console.exe' Arial="Falze" /threaded="true" /LogdsT ext="falze" .
“Documentz and S ettingzmmckechnMy Documentz' Adventuretorks Audit sbm"' /R ootLoggingPath="C:ATemp" /overnde="c:\Document
Settingshmmckechnhidy Documentzhadventure. muliDb"" /dezcription=""Testing Commandline"

F wertinen mostrnt:

Command Line Execution via Ul

After successfully generating a command line string and the “Execute” button is enabled, you can click
it! This will create a command window to run the string via an external process. You may see a blank
command window pop open and remain open until the execution is complete. When that window
closes, the execution output window will display that output of the execution (hopefully a success
message!). Also, the “Open Logging Folder” button will become enabled. This is a courtesy button to
open the logging folder directly from the application should you want to browse the log files.

E xecution output;

Running...
Completed Successfully
Total Rur tire: 00:00:05.1562500

Open Loaging Fr

Command Line Examples

Run standard unattended Sql build

Runs the specified .sbm build file on the designated server using the parameters and target databases
defined in the project. The command line execution uses Windows authentication of the executing
process to connect to the server and database(s). As with in interactive execution, the results are saved
in the .sbm file for review.

* SglBuildManager.Console.exe /build=".sbm file name"
/server=myserver

Example: SglBuildManager.Console.exe /build="ProjectUpdate.sbm" /server=ProdServer

Run an unattended Sql build with manual database override settings

Runs the specified .sbm build file on the designated server using the override database settings defined
in the command line arguments. This is the same as using the Target Database Override setting in the Ul
(see Build Run Settings for details). The command line execution uses Windows authentication of the

23

http://sqlsync.googlepages.com/buildrunsettings

executing process to connect to the server and database(s). As with in interactive execution, the results
are saved in the .sbm file for review.

* SglBuildManager.Console.exe /build=".sbm file name"
/server=server /override=default,override

Example: SglBuildManager.Console.exe /build="ProjectUpdate.sbm" /server=ProdServer
/override=Main,Copy1

Note that multiple overrides may be set if the build file contains more than one default database setting
via a semi-colon delimited list:/override:Main,Copyl;Template, Template2>

Run an unattended Sql build with saved Multi Db configuration

Runs the specified .sbm build file using a pre-configured multiple server/database configuration. The
command line execution uses Windows authentication of the executing process to connect to the server
and database(s). As with in interactive execution, the results are saved in the .sbm file for review.

» SglBuildManager.Console.exe /build ".sbm file name" /override
".multiDb File Name"

Example:
SqglBuildManager.Console.exe /build="ProjectUpdate.sbm" /override="prod release.multiDb"

Script databases using an Auto Script configuration
Uses Sql Build Manager's database scripting feature to script the designated server/database objects to
a target folder.

» SglBuildManager.Console.exe /auto=".sqglauto script cfg file"
Example: SqlBuildManager.Console.exe /auto "script dev databases.sqlauto"

Running a Stored Procedure Test configuration set
Utilizes Sql Build Manager's ability to perform unit tests against stored procedures and saves the results

in a parseable XML data format.

» SglBuildManager.Console.exe /test=".sptest file"
/server=myserver /database=myDb /log=logfile.xml

Example: SglBuildManager.Console.exe /test="testing.sptest" /server=Production /database=myDb
/log="C:\logfile.xml"

Opening an interactive Build Manager Session
Opens the selected .sbm build project file in a user window

= " Sgl Build Manager.exe" ".sbm file name"

See Advanced Command Line Execution for return codes.

24

http://sqlsync.googlepages.com/storedproceduretesting

Targeting Multiple Servers and Databases

NOTE: For more advanced multiple target database deployment, also see Remote Service Execution and
Deployment

Configuring Multiple Database Targets

To execute commands across multiple databases at once, you will need to configure which databases
you want to target. There are multiple ways to configure these targets and the default sequence of
execution. For each however, you open up the “Multiple Database Run Configuration” window via the
Sql Build Manager window, Action = Configure Multi Server/Database Run menu option

+ Sql Build Manager

-} Action [==|List %;3 Scripting = Logging %Too

,j Load/Mew Project File (*,sbm)
j LoadMew Direckary Based Build Control File (¥, sbx)

Change Sql Server Canneckion

Settings
Add Mew Sql Script (Text) Chrl4n
#dd New File

e Mo < £ u

Impork Scripts from Sgl Build Export File
Zompare Build File To.,,.

Expork Scripks To

B

Configure Multi ServeriDatabase Run

oy

Recent Files

Exit:

The default window opened when opening the Multiple Database Run Configuration window will have a
single main tab for the server that your main window is connected to. It will have a sub-tab for each
database that you have configured in the open Sql Build File (.sbm or .sbx) that you have open.

Configurations can be saved via the Action—> Save Configuration menu of the Multiple Database Run
Configuration window. These are saved as .multiDb files

Pre-defined configurations can be loaded from the Action = Load Configuration menu of the Multiple
Database Run Configuration window or via the Recent Files menu if available.

Manual Sequence Assignment
1. Manual assignment consists of typing in the sequence of execution for target databases in the
boxes provided. These will be the database names that are used for the override target of the

sub-tab named database if you are configuring a multi-database build or will define the target
databases for a report generation.

25

% Multiple Database Configuration = [B EJ
-7Action Reports (7]

Select a server in the list to display and configure the run settings.

Servers Server: localhost

localhost —
SqlBuildTest

SqlBuildTest I:I AdventureWorks

I:I AdventureWorks_Copy
I:I AdventureWorks_Copy2
I:I Client

I:I Logging

I:I rmaster

l:l model

I:I msdb

I:I ZglBuildTest

l:l termpdb

I:I Testing

Remove

Unchanged

2. If you need to add additional server targets, you can use the Action - Add Another Server
Configuration menu option and use the connection window to add that server and its database
list to the top level tabs. You would then configure the target database for this server also by
manually typing in the sequence number.

&3 Multiple Database Run Configuration

j} Ackion Reparts

L,?j" Load Configuration
Save Configuration

Tr—

'I,'_‘-j Load Configuration via Query

| Ld Add Another Server Configuration |-
]

3. Toremove a server configuration that you don’t need, make sure that its tab is selected, then
click the Remove button on that configuration

Auto sequence like-named databases
To aid in the assignment of database targets, you can auto fill the sequence textbox for databases that
have similar names.

1. Inthe server configuration tab, right-click on a database name to display the context menu and
select the Auto Sequence Target Databases option

26

Servers Server localluoe

lacalhast
SqEudTen

Stﬂﬂlﬂd]’ﬂ. AdventuraWwarks

Adventureworks_Copy

ﬁi : m::‘-elme T;qetl:unbases

i e {3 I

2. The auto sequence pop-up window will display. In this window, highlight the portion of the
database name that is common to all those that you want to sequence. You can also set the
starting sequence number and the increment for sequencing in this box. Once you have this
configured, click the OK button and all of the databases that match the common pattern in their
name will be sequenced accordingly.

Multi Database Auto Sequence Set-up X

To auto-zequence the multi databasze configuration, highlight the common test to use in pattern matching
the other databazes on the server

Highlight For Search Pattern. Adwenture[HIEAE Copy |

Sequence Start;
Sequence lncrement;

Create Configuration via a Query
If your target database list is available via a SQL query, you can use that query to generate a multi-
database configuration file at run time.

1. From the Multiple Database Run Configuration window select the Load Configuration via
Query.

@ Create Configuration Yia Query |i||E|E|

-7 Action

To properly create your configuration construct wour query as

SELECT <<server name>> <<default DB Mame>> <<override DB Name>>
FROM <<table>> WHERE <<criteria>>

MOTE: To add additional wvalues that will be included in an AdHoc query, add the columng after the <<overide DB MNames> column

Source Server: [locall Source Databaze: | Adventureh/orks w

l Preview Configuration l l Cloge]

2. Inthis window, you can type in the query that you will use to retrieve your database list. The
query must return 3 columns worth of data in order (the column names are unimportant):
Server Name: The server that the target database can be found on. This is needed even if the

27

target database is on the same server as the default database.

Default DB Name: the default database that is configured in the “Database Name” column
of the Build Scripts window.

Override DB Name: Thisis the name of the target database that you actually want to
execute against

3. If you want to add additional data from this source that will appear in an Adhoc query, you can
put in additional columns after the <<override Db Name>> entry and these values will carry over
into the Adhoc query results

4. You can also load an existing query setting (.multiDbQ file) via the Action - Open Saved Query
Configuration or Recent Files menu options.

5. You can change the source database (the database this configuration query will be executed
against) via the dropdown list.

6. You can change the source server (the server where the source database resides) via the Action
- Change Sql Server Connection menu option.

7. Click “Create Configuration” button to generate the configuration file. You will then be
prompted to save the query as a .multiDbQ file (optional). The query window will close and the
newly generated configuration setting will be loaded in the Multiple Database Run
Configuration window.

Threaded Multi-Server Database Execution

Do you need a fast, multi-threaded execution of your scripts across a large number of databases? The
threaded option is right for you. With a few command line settings, you can set up your Sq/ Build
Manager project to get executed across hundreds, even thousands of databases in a parallel threaded
fashion.

NOTE: While this type of execution still manages transactions per each SBM file execution, it does not
manage all of the transactions together like when run in a serial mode. If the scripts run on one
database are successful, they will be committed, even though the scripts for another database may fail
and be rolled back.

Set-up

There are two options for configuring your multi-database execution. If you know all of you target
databases ahead of time and want to set them up manually, you can go through the Ul to create the
configuration. If you need another tool to create the list or want to construct a configuration manually,
you can use a simplified, delimited version of the configuration, one setting per line:

<server>:<default database>,<target database;<default2>,<override2>

* The first argument is the server name, followed by a colon (:).

28

= Next it the first default database, override database configuration setting, using a comma (,) as
the delimiter. (Remember, the default database is the database set in the SBM for the script.
The override database is the actual database you want to execute against at run time.

* |f you have additional default databases set in the SBM file, you will need another override
setting. Separate these pairs by a semi-colon (;).

For each database you want to execute against, add an additional line in the configuration file (i.e. each
line equates to an additional thread). Finally, save the file with a .cfg extension

See Advanced Command Line Execution for the command line syntax to execute your threaded builds.

Remote Service Execution and Deployment

While the tool has the feature for Targeting Multiple Servers and Databases, you can take that multi-
target, multi-threaded execution one step further and distribute that load across multiple “Execution
Servers” as well. It builds on the multiple server functionality and extends it to send build requests via a

remote service call to remote computers that will handle the actual processing of the SQL scripts. You
can spit the load amongst all of your execution servers for maximum efficiency and minimum
deployment time.

Overview
To access the Remote Execution Service form, click the Action = Remote Execution Service menu
item. (If this menu item is not enabled, you will need to have your user id configured by your

administrator to get access)

Sql Build Manager,
-} Action | == % Tools

E j LoadiMew Project File (*.sbm)
j LoadiMew Direckory Based Build Control File (¥, sbo)

| hange Sql Server Connection

Setkings 3

#

Canfigure Multi Server/Database Run

& PRemote Execution Service

Recent Files

The remote execution form has 4 sections:

29

e Remote Servers — this is for the list of remote execution servers that you will be using.
You can either type into the list or use the Action - Manager Server Sets menu option
to set up and load pre-configured server groups. NOTE: an execution server is not
necessarily a SQL Server machine. It can be any computer or server that has the remote
execution service loaded and has connectivity to all of your target SQL servers.

e Execution Settings — this is the same as the execution settings group found on Command

Line Builder form. This will configure which SBM package you will use, the logging path,
execution parameters and the multi-database configuration that will be used.
e Workload Distribution — sets how you would like to distribute the workload across your

execution servers. The default value is “Equally Distribute...” which will do just that.
e Remote Service Status Dashboard — gives you a view of the status of the Sql Build

Manager Build Service on each of the execution servers.

e

Remote Servers Execution Settings:
Fiemote E xecution Server] Rum &5 Trial [rollback] mode Rioot Logging path [lecal path on execution su'.'us]:i
[] e bukds without bransactions Buid Descripion: |
Script Source

Sal Buld Manager Package (.sbm)] |

Ovemde T arget Settngs
Target Oveside Settings [.mubiDb, mukiDBO or .cfg) |

Open Multi-Db config forrn Create confiquration via query Derve Remole Execution Serve
D atabase Authentication Settings
[] Use Windows Authentication User Mame: | | Password

‘Woakload Distribution

Server Vabdation

Equally disinbute load across execubion sarvers
| ms~m5m| i Test Connections | !

[Submit Buld Request |

Remove Service Status Dashboand
Server Name Service Readiness Last Stabuz Check Last Execution Feslt Service YVeszion

Section Detail

Remote Servers
This list of remote servers that will serve as the execution engine for your deployment can be populated
in 2 ways. First, you can type in the machine name of the servers directly into the grid. However, if you

30

plan on re-using server sets, you are better of creating Server Sets via the Action - Manager Server
Sets, menu item which will display the Remote Execution Server Configuration window.

£ Remote Execution Server Configuration

-7 Action

F' Remote Execution Service

_7 Action Thig form allows you to manage sets of execution servers.

Thesze zets reprezent reusable groups to help pou manage different releasze scenarios.

bk’ Manage Server Sets

Server Group Server Group Description:
| Fremote Exscution Server Develapment

Remate Execution S erver

Add Mew Group MOTE: The remate server name should be the machine name.

The first step in creating a reusable configuration is to use the Action 2 New Configuration menu. You
will be prompted for a Server Group name, pick one that makes sense for the group of execution servers
that you will be first setting up and click “OK”. This name will show up in the left side “Server Group”
section. Click on the name to activate the right hand side setting section.

In the “Server Group Description” section, give yourself a meaningful name — for instance “Development
Area execution servers”. Next, add the servers to the Remote Execution Server grid by typing in the
bottom text box of the grid. Once you have finished that group, you can add another Server Group (a
“Production” group for instance) and add the servers for that set or you can use the Action = Save
menu item to save the configuration file. NOTE: the next time you open this page, it will automatically
load the last configuration you used.

Once you have your groups configured, to use one of them, select it’s name in the Server Group list and
click the “Use Selected Group” button. This will close the form and add the server names to the Remote
Execution Server grid on the parent page.

Execution Settings
For a description of the common settings between this form and the Command Line Builder form, see
that section. There are a couple of important differences:

® Root logging path — this path must be present and accessible on each execution server. It is best
to use a local folder path on the execution server (vs. a network share) to maximize
performance and reliability of the logging and execution.

e Override Target Settings / Configuration links - the 2 links “Open Multi-Db config form” and
“Create configuration via query” allow you to create and/or preview the multi-database
deployment configuration. Just like the command line, this can be done via a pre-configured file

31

(.multiDb — which is an XML formatted configuration file or .cfg which is a plain text delimited
file) or via a .multiDbQ — which is a formatted database query that can dynamically construct the
configuration for you. These links will open the appropriate configuration page. By saving the
new configuration file and closing out the form, the configuration file name will populate in the
Override Target Settings text box.

e Derive Remote Execution Server list from Override Target Settings — this is an option you can use
if your target database servers also act as your remote execution servers. By checking this box,
you direct the tool to derive the list of unique server names from the Override Target Settings
file or query and then use this list as the Remote Execution Servers list. NOTE: checking this box
will automatically change the Workload Distribution to Each execution server handles only its
local load (matches host names). You can change the selection if you'd prefer however.

Exscution Settings

[C] Run az Trial [rolback] mode oot Logging path flocal path on exscution sennss)
[] Run buids without transactions Budd Descriplion:
Scopt Source
Sqi Buid Manager Package [sbim) (&)
Wiy Packags
Orvesnide Taeget Setting:
Taiget Ovenide Settng: [mubiDb, matiDbD o _clg) =
Cpen Multi-Db config forrn Create configuration vis query Deiive Remote Exscution Server st from Ovemde Tapsl Seltings [
Diatabase duthenticstion Seftings Alesniale Loggng Databasce
LUsa ‘Windowss Authentication Lses Mame: Prassvad
Workload Distribution

To take advantage of the multiple execution servers, you need to distribute the load to each of them,
further distributing the processing of the SQL scripts. This can be managed in 2 ways:

e Equally distribute load across execution servers — simple enough. It will take the load, split it as
equally as possible across all of the servers. The split is done by chunking out into approximately
equal parts.

e Each execution server handles only its local load (matches host names) — this option should only
be used if you double task your server not only as a SQL Server host, but also a remote
execution host. This will tell the distributor to do a match between the execution server name
and the server name of the target database. It will only task the execution server with positive
matches.

Wiorkload Diztribution

Equally diztribute load across execution servers w

E qually distribute load across execution servers
E ach execution gerver handles only itz local load [matches host names)

Because work is being distributed and/or matched to execution servers, there is the potential that the
workload could be unbalanced and/or database could be missed altogether. To give the user insight into

32

this, once a SBM build file and Override Target Setting values have been provided, the “Preview
Distribution” button becomes enabled. This will have the tool do a dry run at splitting up the workload
and display for you how it will be managed as well as any databases that will be skipped and execution
servers that would be un-tasked.

* Calculated Execution Distribution

This page dizplays how the load wil be distibuted across your active execution servers.
It alzo shows any potential unaccounted for databases or untasked servers.

Load Distribution Unazsigned D atabase Servers!!
Execution Server | Target DB Count | Database Server
T i T T LT TR
LIRS e 1 TR My 1t
PR _—

Untasked Execution Servers

Execution Server

TETaw ™

v i

Z |

Remote Service Status Dashboard
This report the status of the execution servers you have configured in the Remote Servers section. It is
populated by clicking the “Check Service Status” button.

Rlemave Setvice Statut Dashbostd
Senace Fleadingss Lact Stabus Check Last Execution Flesult Senace Verson Tep Senvice Erl
ReadyTofccept DE/Z/2010 105341, 422 i aiting 8580 red. b/ flocalk
DB/ 200 105341 454

nel top:/ A EIN

The 6 status columns are:

e Server Name — you guessed it, the name of the execution server.
e Service Readiness — tells you the status of the service on that machine. The possible values are:
o ReadyToAccept — the service is at your beckon call and ready to go.
o PackageAccepted —you have submitted a package and it is undergoing setup.
o PackageValidationError - there is something wrong with the package and it could not be
processed
Processing — hmm. Yes, it’s doing your work for you
Error — something bad has happened.
Unknown — the service isn’t properly reporting a status.

O O O O

Unreachable — the service can’t be contacted — is the service running?
o ProcessingCompleted — the job is done and the processor is completing it’s clean-up
e Last Status Check —the last time the client attempted to contact the service for a status update

33

e Last Execution Result — since the remote service has been started, what was the result of the
last execution. If nothing has been run since the service start, it will report “Waiting”. Otherwise
you will most often see:

o Successful —self explanatory

o FinishingWithErrors — the processing completed, some databases were probably
updated, but some have experienced a problem. You can check which ones via the
service status context menu.

e Service Version — just to make sure you're services are all in sync, this is the program version of
each execution service.

e Tcp Service Endpoint — the Sql Build manager talks to the remote execution servers via a TCP
connection. This tells you what the URL and communication port are for the service. This is used
mostly for troubleshooting.

Service Status Context Menu
To view the details of the last execution, you can right click on a cell in the Remote Service Status

Dashboard to pull up the context menu. In this menu you have five options:
Last Exscution Fesult Senace Werson Tep Service

Tubl Views Last Execution “Errors” log
|| Wiews Last Execution *Commits™ Log
“ || Paste ServerfDatabass vahe below o retrieve detalled log for kast run:

f1 iew Remots Service Executable Log fils
%)) wiew Buid Request History for this Remote Service

e View Last Execution “Errors” log — this will display the error log from the selected row’s target
server. This log displays the list of servers for which execution was not successful.

Script Display :: DOFSR AT .. Errors Log from L9 @ = 57 I'-_II'Elle
Vw

Execution Serwver:

Local File Path: ChvtemphtestOD00NErrors., Tog

File Date: 12/15/2009 02:41:02

-

[12/15/2009 14:40:49.092] =+ g for Run I0:

[12/15 /2009 14:40:49.092] = B ety HEY B . : Changes Rolled back. Eeturn code: -400
[12/15,/2009 14:41:02.813] Finishing with Errors
|Find: | | g Mest § Previous [] MatchCase Goto fine #:

e View Last Execution “Commits” log — this will display the commits log from the selected row’s
execution server. This log displays the list of servers for which execution was successful.

e Paste Server/Database value below to retrieve detailed log for last run — this is a very long
winded label, but you get the idea. You can take the target database/server from the errors or
commits log (pixilated above for your protection), paste it in here and the execution service will
send back the detailed execution log specifically for that database. In that log, you should see
exactly what happened with the run.

e View Remote Service Executable Log file — the remote service agent keeps a running log of
errors and warnings that may be useful to determine what caused an issue with an execution —

34

especially if the error is not SQL related. This menu item will pull the contents of that log file into
a display window for you, so you don’t need to login to that machine directly

e View Build Request History for this Remote Service — as of version 8.5.8, the agents will keep a
history of accepted build requests. This menu item will display information about these
requests. From this new window, you will also be able to use the context menu to pull back the
log files for each specific execution.

| Build History for: localhost

Busld Package Hame Requested By Execution Resuk Local Root Log Path

Haurrdags T ezt shm ha R FirsshingWithEnors c:\temp'log doghlogh 234
B/2201017:43 AM Hasrdezs Test sbin b Ml s FireshanagWkHE ricis cMbeat\ 343434
Bf2R20T011:47 &M Hatredss Test shmn T il | catimepiiagepthi FinizhinghthE riors cesth 343434

Pre-testing database connectivity
Once you have added or loaded your list of Remote Execution Servers and also set your Override Target

Settings value, the application has enough information to be able to pre-test the remote execution
server’s agent ability to connect to its designated database targets. This pre-test is not required, but
may highlight connectivity issues prior to you actually executing a full build.

To execute the test, just click the “Test Connections” button and the application will instruct the remote
execution servers to make a connection (don’t worry, no scripts will be run). If all connections as
successful, you will get a simple pop-up message confirming this. If there are connection issues, you will
get a pop-up listing the remote execution server name, the SQL Server name and the database name
where the connection could not be made.

Server Wabdation

| u-.eckaummmg{ [Test Connections |)

Performing a remote execution
Below is a step-by-step how-to for running a remote execution and deployment. For details about each

section and its function see above in the Remote Execution and Deployment overview and section detail

1. Open the Remote Execution Service From
Type in or load list or Remote Execution Servers that you will be tasking with your deployment.
Click the “Check Service Status” button. This will have the Sql Build Manager call out to the
specified servers and see if they’re ready to go.

4. Type in your Root Logging Path — remembering that this is going to be a local path that will
reside on each execution server. You can use System Environment variables in the path to make
is more customizable.

5. Type in a Build Description — a “serial number” or description of why you’re performing the build

35

10.

11.

12.
13.

Select a Script Source — your SMB build package. You can either type in the path or use the
“Open” button to navigate to it.

Select an Override Target Settings value — your pre-defined .multiDb, .multiDbQ or .cfg file. You
can also create a new one with either the “Open Multi-Db config form” or “Create configuration
via query” link buttons.

Optionally, you can change your authentication settings and the Alternate Logging Database
values.

Next, select your workload distribution so tell the tool how you want to spread the work across
your servers.

Optionally, but a good idea, click the “Preview Distribution” button. This will display the
“Calculated Execution Distribution” form so you can ensure that all servers and databases will
be tasked and updated.

Finally, click the “Submit Build Request” button. This will send the distributed load to the
execution servers for work. While processing is going, Sql Build Manager will automatically
query each of the execution servers 2 times a second to update the Service Readiness and Last
Execution Result values.

Once all services report back a status of “ReadyToAccept”, the auto polling will stop.

If any of the execution servers reports a “FinishingWithErrors”, you should check the results via
the “View Execution ‘Errors’ Log” and the detailed log results to see how you can mediate and
correct the problems.

For a command line execution across multiple servers, see the Advanced Command Line Execution

section below.

Advanced Command Line Execution

Execution Flags
To run your multithreaded build or remote server execution, you need to use the

SqlBuildManager.Console.exe utility with the command line options:

/threaded=true This is the key flag to alert the utility that you will be executing this SBM file
in a multi-threaded mode. This flag is used exclusively for the threaded mode.

/build="<.sbm file name>"
Lets the tool know that you want to run a Sql Build using the specified .sbm file. This is not used
alone, but in conjunction with a /server and/or a /override argument.

/ScriptSrcDir="<directory path>"

Alternatively, if you want to run your scripts from a directory instead of a pre-constructed SBM
file, you can use this option. Set the value to the directory where your scripts are located. The
engine will look for all files with a .sgl extension and sort them by file name. They will be
configured to leave transactions with full rollback on failure. If this and a /build tag are found,

36

this will be used. Also, since the files will be added without a default database setting, the
engine will use the first override database setting per line in the config file

/override="<.multiDb file name>" or /override="<.cfg file name>"
Sets the pre-configured multi database/server configuration or the text delimited configuration
to be used along with the .sbm file for the build run.

/RootLoggingPath="<directory name>" Sets the root directory under which all of the log
files and folders will be placed. This flag is used exclusively for the threaded mode. Note that
you may use environment variables in this path to make value more dynamic per system.

/trial=<true or false> By default, the threaded execution will commit the changes to the
target databases. If you want to experiment with the run to check how it will go, you can set the
trial tag to true. This will work the same as the trial mode in the Ul and roll back the changes in
each database, even upon successful completion. To keep things more simple, the successful
runs are still added to the Commits log file but are recorded as "Build Successful. Trial Rolled-
back"

/LogAsText=<true or false>. Be default, the value is false, which will create the Commits
and Errors log files in HTML. The advantage of this is that it will hyperlink you to the appropriate
folder for viewing error or execution log details. If you set the value to true, the same
information will be written, just in plain text.

/username="<user name>" The user name for a SQL Server user account that you want to
execute under. If this tag is present, then a /password tag is also required. If these tags are not
present, the tool will use Windows authentication when connecting to the database.

/password="<password>" The password for the SQL Server user account that you want to
execute under. If this tag is present, then a /username tag is also required. If these tags are not
present, the tool will use Windows authentication when connecting to the database.

/LogToDatabaseName="<alternate database>" Allows you to write the commit logs to
the SqlBuild_Logging table on a different database than the target databases. This should be
used sparingly as it will not give you the proper script status when opened in the user interface

/description="<run description>" Allows you to add a custom description to the run.
This will be used in the same fashion as a description added during a serial/manual run. This will
also be used as the token replacement for any dynamic scripts you have. The token for this
value is #BuildDescription#

/Transactional=<true or false> Allowsyou to run the scripts without transactional
protection. WARNING! Using this setting will mean that if a script fails, all previous scripts will
still be committed and your databases will be left in an inconsistent state

37

* /TimeoutRetryCount=<positive integer number value> Sets the ability to have the
o“.,n

package be automatically re-run “x” number of times if the SQL Server exception encountered is
“Timeout expired”. This is not valid in combination of /Transactional=false

The following keys are used exclusively for Remote Server Execution. See this section above for the Ul

version and explanation of this functionality. Unless noted, the above Execution Flags can also be used
to configure the run. For ease of use and to help you create a properly formed command-line string,
there is now a “Create Command Line” button available — but be aware that while this does create a
well formed string it does NOT validate the values or files and therefore does not guarantee execution

success.

ok boad Dristribastion
Equal}l distnbude bhad scioss execubon serveds L

| Submi Buid Foguest | | Coeate Command Line

» /remote=true Thisis the key flag to alert the utility that you will be distributing execution to
remote execution servers. This key should not be combined with the /threaded flag.

» /RemoteServers="<remote server file>" This defines the file to use that defines the
remote execution servers that will be used for this run. This file should be a simple text file that
contains one machine name per line.

* /RemoteServers="derive” Thisis an advanced setting that you can use if your target
database servers also act as your remote execution servers. This instructs the tool to derive the
unigque server names from the /override settings and use that list as the remote server list.

* /DistributionType=equal or /DistributionType=local Defines how the load for the
execution will be split across the execution servers. For details, see the Workload Distribution

section.

Logging

Since there isn't a user interface for this type of execution, logging is obviously important. For general
logging, the SqlBuildManager.Console.exe has its own local messages. This log file is named
SglBuildManager.Console.log and can be found in the same folder as the executable. This file will
be the first place to check for general execution errors or problems.

To accommodate the logging of the actual build, all of the output is saved to files and folders under the
path specified in the /RootLoggingPath flag. For a simple threaded execution, this is a single root
folder. For a remote server execution, this folder is created for each execution server.

Working folder

This folder is where the contents of the .SBM file are extracted. This file is extracted only once
and loaded into memory for the duration of the run to efficiently use memory.

38

Commits.html (or .log for text scripting)

Contains a list of all databases that the build was committed on. This is a quick reference for
each location that had a successful execution.

Errors.log (or .log for text scripting)

Contains a list of all databases that the build failed on and was rolled back. This is a quick
reference for all locations that had failures.

Server/Database folders

For each server/database combination that was executed, a folder structure is created for each
server and a subfolder in those for each database. Inside each database level folder will be three
files:

* LogFile-<date, time>.log: This is the script execution log for the database. It
contains the actual SQL scripts that were executed as well as the return results of the
execution. This file is formatted as a SQL script itself and can be used manually if need-
be.

* SglSyncBuildHistory.xml:the XML file showing run time meta-data details on
each script file as executed including run time, file hash, run order and results.

* SglSyncBuildProject.xml:the XML file showing the design time meta-data on each
script file that defined the run settings, script creation user ID's and the committed
script record and hash for each.

Command Line Return Codes

Execution Result codes
These are the codes that may be returned by the SqlBuldManager.Console.exe file to the originating
command. Any non-zero result is an error.

0 - Successful execution

1 —The execution finished however there was an error on one or more target databases. You
should check the errors. log file for details.

-99 - The /RootLoggingPath flag is missing. This is required for threaded and remote server
executions.

-100 — The /override flagis missing

-101 —The /build flag is missing. This is required to define the .SBM file that is to be executed.
-102 —The /override flag has an incorrect value

-103 — The .SBM file was invalid. The application was not able to load the .SBM file

39

-104 — The MultiDb configuration file was invalid. The application was not able to load the
MultiDb, .MultiDbQ or .cfgfile

-105-A /scriptsrc flag was found, but the specified path was not found.

-106 — The .SBM file defined in the /build flag was not found

-107 — Aninvalid /transactional and /trial flag combination was found. A run cannot be
/trial=true and /transactional=false

-108 — Upon loading the multi-database configuration, a missing default value or target override
setting was found. This needs to be corrected for the scripts to run.

-109 — Negative /TimeoutRetryCount value. This flag must be set to a positive integer balue
-110 - Aninvalid /transactional and /TimeoutRetryCount flag combination was found.

A run cannot be set with /TimeoutRetryCount= (anything >0) and
/transactional=false

-200 — The .SBM file scripts were not extracted properly.

-201 - The .SBM file was not in the proper format. The data was not loaded

-300 — Run initialization error. Unable to configure runtime data

-301 — Build processing error. A particular execution thread encountered an error. Check the
errors. log file for details.

Remote server execution specific error codes

-600 — Unable to create a Build Settings object from specified command line arguments
-601 — One or more of the remote execution servers encountered an error in execution
-700 — The /RemoteServers flag is missing

-701 — The /RemoteServers flagis invalid. This must refer to an existing file.

-702 —The /DistributionType flag is missing.

-703 —The /DistributionType flag value is invalid.

-750 — One or more of the specified remote execution servers did not return a “Ready to
Accept” status message

-751 — Unable to connect to one or more of the specified remote execution servers.
-752 — No remote execution servers were specified

Advanced Script Handling

Utility Scripts
To assist you in creating robust, re-runable scripts, Sql Build Manager comes with an array of “utility

scripts” that will allow you to insert commonly used, customized script snippets into your script file. For

instance, let’s say you need to write a script to add to a column to a table. What is the best way to write

that script? Sql Build Manager knows!

40

Utility Script Example
1. Right click on the Build Script list and select “Add New Sql Script (Text)” menu item (you can
also use the Ctrl+N hot key)

Build Scripts
Segf Scrpt File Databaze Mame T
[1000 Yerziohz Table pdate. zql B

7 Edit File

EditWigww Script Build Detail

|0 Add New Sal Script (Text) ChrlN

=2 Add Mew File

2. The “Add Sql Script Text” window will pop up. In this window, right click in the main script
window to pull up the utility script context menu. Since we’re adding a column, pick the
“Columns” menu, then the “Add Column” option.

Add SOQL Script Text

Script Mame <Fl=:

Target DE: | v| Build Sequence #: Script Time Out (seco

Description;

Roll back entire build on failure Strip Transaction References
Allow Multiple Committed Runs on same Se

CREATE--=ALTER
WITH MOCHECK ADD - (string literal)
WITH (NOLOCK) - (skring liceral)

Insert Comment Header

| Calurins 4 | Add Calumn Py |

Foreign Keys 4 Alter Column

3. The Utility Script Replacements window will display. Since we picked Add Column, the fields
required to define a new column. The scratch pad area is the contents of your clipboard. This
can be handy if you have some snippet you want easy access to. Next, fill in the column
definition for the required fields. As a short cut, you can highlight text in your scratchpad area
and press the function key associated with the textbox you want to fill.

41

=

Utility Scripts Replacements :: Add Column Z E|E|

Add Replacement Yalues:

Table Schema <Fl= ||:Ib0 |
Table Name <Fz2= |MyTabIe |
Colurnn Marne <F3= |NewCqumn |
Column Definition < Fe} = |hiﬂ |

Scratch Pad:

Add Scratch Pad to Clipboard on Close

4. Once you have filled in your definition, click the Submit button. This will close the Utility Scripts
Replacements window and insert the newly created script into the body of the Add SQL Script
Window. A couple of notable features are added. First, a default name was added to the script
name box. This name is dependent on the type of action you performed. Here for instance it
gives you a name describing the addition of a column. Also of note the script that was created is
“wrapped” in select against the database to see if the column already exists in the database.
This allows you to commit the script multiple times without worrying about getting an error that
the column already exists

Add SOL Script Text

Script Mame «Fl=;
|F'.I:Id dbo .MyTable.MewColumn Column

Target DB: | v| Build Sequence #: Script Time Qut {seconds): |20 | Tag:| v|

Description:

Roll back entire build on failure Strip Transaction References

Allaw Multiple Committed Runs on same Server

IF HOT ExXISTS(SELECT 1 FROM information_schema.columns WITH (WOLOCK) WHERE
TABLE_NAME = 'MyTable' AND TABLE_SCHEMA = 'dbo' AND COLUMN_NAME = ‘NewColumn')

BEaIN ALTER TABLE [dbo]. [MyTable] ADD Mewlolumn bit
G0

Save] [Cancel] Line: 2 Characte
‘Find: | | EE} Next ‘EE Previous [Match Case Gota line #: I:
Added By: AddDate: LastModBy: Last Mod Date:
Script Id: SHA1l Hash:

Simple Text Inserts
Some of the utility options don’t do much other than insert simple, commonly used pieces of SQL.

42

e WITH NOCHECK ADD - (string literal) : this does just that, adds the text WITH NOCHECK ADD at
the location of your cursor. Handy when working with Foreign Keys.

e WITH (NOLOCK) - (string literal) : adds the text WITH (NOLOCK) at the location of your cursor.
Handy when working with scripts that have selects against tables that can afford the potential
for a “dirty read”

¢ Insert Comment Header: adds a comment header block to your script at the location of your
cursor. Great for ensuring consistency in your procedure and function definitions.

WITH NOCHECK ADD - {string licer al)
WITH (MOLOCK) - (string literal)

Insert Comment Header

e Grant Database Permissions: Adds a rather large script to iterate through your target database
and grant permissions to all of your stored procedures and functions to a specified list of user
groups.

Token Replacements
A canned search and replace function.

e CREATE - ALTER: This will search all the text you have highlighted for the word CREATE (case
insensitive) and replace it with ALTER.

CREATE--=ALTER. H

WITTH R HET K Anm - ckvima likaral

Script Creation

These utilities will help you create your scripts from scratch. You don’t need to know the syntax for any
of the scripts, just fill in the form and the scripts are created for you. The example above in Utility Script
Example is a sample of a script creation utility. The others are found in the sub-menu for their object
type. All of these scripts will contain the “IF EXISTS” or “IF NOT EXISTS” wrapping to ensure they are fully
re-runable.

43

Columns 3

Foreign Keys 3
Primary Keys]
Default Constraints k
Triggers 3
Tahbles k
Indexes k
Statistics 3
Stored Procedures k
Functions »

Columns
Add Column: As above, generates a script to add a column to a table

o Alter Column: Creates a script to alter a column on a table
o Delete Column: Creates a script to delete a column from a table
o Rename Column: Creates a script to rename a column. This is a pretty complex one, very

useful if you are going to rename
Foreign Keys
o Drop Single Foreign Key: Creates a script to drop a foreign key from a table
o Drop All Foreign Keys: Creates a script to drop all of the foreign keys associated with a
table. Another pretty complex script.
Default Constraints
o Add Default Constraint: Creates a script to add a default value to an existing column in
an existing table.
o Drop Default Constraint: Creates a script to drop a default constraint on a column. Use
this when you know the name of the constraint already
o Drop Column Default Constraint: Creates a script to drop a default constraint on a
column when you don’t know the name of the constraint. This is useful when you had
created a constraint without specifying a name and let SQL server name it for you with a
random name.
Triggers
o Drop Trigger: Drops a trigger from the database
o Disable Trigger: Creates a script to disable an existing trigger on a database table
o Enable Trigger: Creates a script to enable an existing trigger on a database table
Tables
o Drop Table: Creates a script to drop a table.
Indexes
o Add Index: Creates a script to add a standard index (non-unique, non-clustered) to a
table. Specify a comma delimited list of columns.

44

O

Add Unique Index: Creates a script to add a unique index to a table. Specify a comma
delimited list of columns.

Add Non-Clustered Index: Creates a script to add a non-clustered index to a table.
Specify a comma delimited list of columns.

Drop Index: Creates a script to drop an existing index

e Stored Procedures

O

O

Drop Stored Procedure: Creates a script to drop a stored procedure from the database.
Grant Execute to Stored Procedure: Creates a script to grant the EXECUTE permission to
a specified user to stored procedure

Revoke Execute to Stored Procedure: Creates a script to revoke the EXECUTE permission
to a specified user to stored procedure

e Functions

o Drop Function: Creates a script to drop a function from the database.
o Grant Execute to Function: Creates a script to grant the EXECUTE permission to a
specified user to function
o Revoke Execute to Function: Creates a script to revoke the EXECUTE permission to a
specified user to function
Script Wrappers

These are utility scripts that will take a script you already have and put it in an IF EXISTS or IF NOT EXISTS
wrapper. These help you create more robust scripts that perform pre-checks around your change to
limit the number of failures and roll-back changes you have as you run the scripts across your
environments. Like the script creation utility scripts, these are found in the sub-menu items for the

object type.

1. Add your custom script to the script form. Highlight the script (or portion of) that you want to be
wrapped, then select the appropriate object wrapper selection

45

Add SQL Script Text Xl

Script Mame <Fl=:

|Dro|:| Table tablename |

Target DB: | v| Build Sequence #: Script Time Out

Description:

Roll back entire build on failure Strip Transaction References
Allow Multiple Committed Runs on sa

ADD My MewZo | umn

CREATE--=ALTER
WITH MOCHECK ADD - {string literal)
WITH {MOLOCK) - (string literaly

Insert Comment Header

Save Car| Tl

‘ Find: | Foreign Keys

Primary Keys
Added By: AddDate:

Default Constraints
script Id:

Triggers

Tables

oo

Add Colurnn
Alter Colurn
Drop Column

Rename Column

IF WOT EXISTS,. Column

IF EXI5TS... Column %

2. The utility window will open up. Notice that your highlighted text has been added to the
scratchpad. Also notice that the checkbox “Insert Scratch Pad Values” is checked - this setting
means that the text in the scratchpad will be inserted inside the wrapper. Fill out the form and

click submit.

. Utility Scripts Replacements :: IF NOT EXISTS...Column

Add Replacement Yalues:

Table Mame <Fl= |MyTabIe |
Table Schema <F2= |dbo |
Column Mame <F3= |MyNewCqumn |

Scratch Pad:

ALTER TAELE [dbol. [MyTable] ADD MyMewClolumn bit]

ID Add Scratch Pad to Clipboard on Close (Insert Scratch Pad Ualues) Submit

3. The utility window will close and your highlighted text with be overwritten with the updated

“wrapped” script

| TP IR R e e e S W SR e e T

IF WOT EXISTS(ZELECT 1 FROM INFORMATIOM_SCHEMA.Columns WHERE TABLE_MAME = "MyTable' AMD TABLE_SCHEMA = 'dbo' AND COLUMN_MAME

BEGIN

ALTER TRELE [dbo]. MyTable] ADD MyMewColumn bit
END
a0

e Columns

o IF NOT EXISTS...Column: Puts a wrapper around a script to ensure that a column doesn’t

exist on a table prior to running the enclosed script.

o IF EXISTS...Column: Puts a wrapper around a script to ensure that a column does exist on

a table prior to running the enclosed script.
e Primary Keys

46

™y

o Wrap Add Primary Key: Checks to make sure a primary key does not exist before running
the enclosed Primary Key add script.
e Triggers
o Wrap Add Trigger: Adds a script header to check if a trigger is pre-existing. If yes, then
the trigger is dropped. Your create script is then added after this wrapper.
e Tables
o Worap Add Table: Checks to make sure the table you are adding does not pre-exist in the
table. If not, it falls into your add script.
¢ Indexes
o Wrap Add Index: Checks to make sure an index on a specific table does not exist prior to
running your enclosed script.
o Worap Alter Index: Checks to make sure an index on a specific table does exist prior to
running your enclosed script.
e Stored Procedures
o Wrap Add/Alter Stored Procedure: Adds a script header to check if the stored procedure
is pre-existing. If yes, then the stored procedure is dropped. Your script is then added
after this wrapper.
e Functions
o Wrap Add/Alter Function: Adds a script header to check if the function is pre-existing. If
yes, then the function is dropped. Your script is then added after this wrapper.
e IF EXISTS...Object: Creates a generic query against sysobjects to see if the specified object and
type exist. If it does, it will run your enclosed script
e IF NOT EXISTS...Object: Creates a generic query against sysobjects to see if the specified object
and type exist. If it does not, it will run your enclosed script

Script Manipulation and Optimization
There are several built in routines that will modify your scripts to perform specific functions.

Cptimize SELECT ¢ Add "WITH (NOLOCK)" Direckive

Convert bo ALTER COLUMMN

Transform ko resync TABLE

Optimize SELECT : Add “WITH (NOLOCK)"” Directive

This routine scans through your script (just your selected section or the entire contents if nothing is
selected) and will add a WITH (NOLOCK) directive to all of your table select scripts. This is a very
important directive to add to your scripts (especially stored procedures and functions) to improve
performance. NOTE: this should only be used when a dirty read is acceptable: reports and displays for
instance, but not on important transactional selects.

47

Convert to ALTER COLUMN

This will take a simple CREATE TABLE script or selection of column definitions and modify it to a series of
ADD/ALTER column.

1. Add your CREATE TABLE script to the script window (or just the column definition sections) and
highlight it. Right-Click and select the “Convert to ALTER COLUMN” menu option

[int NTITY 1,1) NOT FOR EEPLICATION NOT NULL,

nel] [hwarchar](&0) COLLATE S3L_Latinl_General _CP1_CI_A% NOT MULL)

2. The program will run through its processing and produce the altered script containing an IF
EXISTS wrapper to ALTER or ADD the defined columns.

IF ExXISTS(SELECT * FROM information_schema.columns WHERE TAELE_MAME = 'Address' AMD TABLE_SCHEMA = 'Person' AND COLUMN_MAME
ALTER TABLE [Person]. [Address] ALTER COLUMN [AddressID] [int] IDENTIT¥(1,1) MOT FOR REPLICATION MNOT MULL
ELSE

ALTER TABELE [Person]. [Address] #DD [AddressID] [imt] IDENTITY(1,1) NOT FOR REPLICATION MOT MULL
lelo}

IF EXISTS{SELECT * FROM information_schema.columns WHERE TABLE_MAME = 'Address' AMD TABLE_SCHEMA = 'Person’ AND COLUMM_NAME
ALTER TAELE [Person]. [Address] ALTER COLUMM [AddressLinel] [nvarchar](e0) COLLATE SQL_Latinl_General CP1_CI_AS WOT N
ELSE

ALTER TAELE [Person]. [Address] fDD [AddressLinel] [nwvarchar] (600 COLLATE SQL_Latinl_General _CP1_CI_AS MOT MNULL)
G0

Transform to resync TABLE

This routine will make sure that a table in all of your environments match the schema of the table you
have scripted. The script created will first make sure that the specified table exists (it not, it will create
it) then perform an ADD or ALTER column script for each column you have defined. Finally (and this is
the part to be very aware of), it will iterate through the rest of the table schema and DROP any columns
that you didn’t have defined. This leaves you with the potential for data loss.

1. Add your CREATE TABLE script to the script window and highlight the text. Next, Right-Click and

select the “Transform to resync TABLE” menu option.
| [+] &llow Multiple Cormmmitted Runs on samg

_REATE TAELE [Person]. [Address
[addr I0] [int] IDE (1,
[addressLinel] [nwarchar]|

1) NOT FORE REPLICATION MWOT MULL,
G0 COLLATE SQL_Latinl_General _CP1_CI_AS NOT NULL)

2. You will be presented with a warning message, just to make sure you are aware of the risks and
what will be created

F

Arne you sure?

P | This will generate a script to remove all columins nok referenced in the highlighted tesxt,
\./ Are you sure wou wank bo continue?

[s] [Mo]

3. Clicking “Yes” will process the script and produce the re-sync results.

48

| o

IF MOT EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TAELE_MAME = 'Address' AMD TABLE_SCHEMA = 'Per
CREATE TABLE [Person]. [Address] (temp_will_be_remowed bit MULL)
20

IF EXISTS{SELECT * FROM information_schema.columns WHERE TABLE_NAME = 'Address’ AND TABLE_SCHEMA = 'Person
ALTEE TABLE [Person]. [Address] ALTER COLUMM [AddressID] [int] IDENTITY{1,1) MOT FOE REPLICATIOM NOT
ELSE

ALTER TABLE [Person]. [Address] ADD [AddressID] [int] IDENTIT¥(1,1) MOT FOR REPLICATION MNOT NULL
GO

IF EXISTS(SELECT * FROM information_schema.columns WHERE TABELE_NAME = 'Address' AND TABLE_SCHEMA = 'Person
ALTERE TABLE [Person]. [fddress] ALTER COLUMM [AddressLinel] [nwarchar](60) COLLATE SQL_Latinl_General
ELSE

ALTERE TABLE [Person]. [Address] 20D [AddressLinel] [nwarchar]{60) COLLATE SQL_Latinl_General _CP1_CI_{
a0

IF EXISTS{SELECT 1 FROM information_schema.columns WHERE TABLE_NAME = 'Address' AND TABLE_SCHEMA = 'Persaon
ALTERE TABLE [Person]. [Address] DROP COLUMH temp_will_be_remowved
a0

--Remowe any obsolete columns
DECLARE @sal warchar (10007
<

Script Policy Checking

The Sql Build Manager will perform checks against your scripts at you save them or script them from the
database. These are designed to ensure that you have robust, repeatable scripts that are efficient and
optimized. If a script does not pass one or more policy checks message box describing the violation will
display. The user does have the ability to ignore the warning and continue on if they choose to do so.

& Script Policy Violations Found! g@g|
Your script violates the following policies: (7]
Seript Mame: dbo.uspGetBillofMaterials PRC

Policy Name Yiolation Messane

Check for GRANT EXECUTE Missing execute on dbo.uspGetBillofMaterials

WITH (NOLOCK) The script is missing ane or maore WITH (NOLOCK) directives or [NMOLOCK Exception! <reason=] tag

Gualified Mames (beta) Missing schema qualifier on: [BOM_cte] cte, the CTE, [BOM_cte] b

Check for Comments Mo standard cormment header found

Do you want to continue to add these files?

(add files and fix later) (Cancel fdd)

Manual Policy Checking of Build Package

In addition to policy checking when first adding or saving a script in the Sql Build Manager project, you
can also run the policy checks against the entire contents of the package at once. This is accomplished
via the Tools = Script Policy Checking menu option

49

+ Sql Build Manager
-7 oction ==|Lst 9 Scripting = Loaging | 3% Tools |2 Help
Settings Database Object validation

Server: {local)
Project File: & \Documents and Settingsin|

Stored Procedure Testing

Build Scripts Database Schema Scripting

Seq#t | Script File
(/M

Code Table Scripting and Auditing

User Data Histary and Audit Scripting

Data Extraction

[/ 1000

% B Gl B0

Create Scripts from Extracted Data

4 Database Analysis

Auto Scripting 3

,;EEI Rebuild Previousky Commited Bulld File

B Construct Command Line String

I |
sl

‘ Setipt Policy Checking

This will present you with the Script Policy Checking window. This window gives you the list of available
policies and a description of each. Be default, all of the policies are checked, but you can uncheck any
that you don’t want to run this time. Next, click the “Execute Policy Checks” buttons and the results will
appear in the bottom list. By default, failures are sorted at the top of the list. To correct violations, you
can double click on the script name in this list to open an edit window.

-
@ Script Policy Checking

Folicy Type Policy Description
Check for GRAMT EXECUTE Checks that Stored Procedure and Function scripts have at least one "GRANT EXECUTE" statement
Check for GRAMT .. TO [public] Checks that scripts do not GRAMT any privileges to the [public] group
WITH [MOLOCK) Checks that select scripts include 'WITH [NOLOCK) directive or have a [NOLOCK Exceptior: <reazon:] tag

Re-mnable scripts Checks that scripts contain "IF EXISTS" or "IF MOT EXISTS" checks sothey are potentially re-unable

Gualified Mames [beta) Checks that object references are fully qualified [<schemas <object name:] - in beta

Check for Comments Checks that Stored Procedure and Function have a comments header and recent comments

Script M ame Policy Check Paszed? | Result Message R
dbo.uspGetBill0fd ateriale PRC - Check for Comments Falze Mo standard comment header found

dbo.uspGetBillOfd atenials. PRC Qualified Mames [beta) Falze Miszing schema qualifier o [BOM_cte] cte, [BOM_cte] b, the CTE

dbo.uspGetBildfi aterials PRC WITH [NOLOCK) Falze The script iz mizsing one or more WITH [MOLOCK) directives or [NOLOCK Exception: <reasons...
dbo.uspGetBill0fM atenials. PRC - Check for GRANT EXECUTE Falze Mizzing execute on dbo.uspGetBillOfM atenals |V

Check complete.,

Grant Execute Policy
This policy checks all of your stored procedures and functions to ensure that they include at least one

GRANT EXECUTE ON <routine> TO <user or role> statement at the end. This is designed to ensure
that proper privileges are granted to the routines so that there will not be permission problems when
you deploy them.

Grant Execute to [public] Policy
Be default, SQL Server has a public role. In most cases where security is a concern, you don’t want to

use this role, but rather want to create one that has only the rights that you specify. This policy looks to
see if there is a GRANT EXECUTE ON <routine> TO [public] statement in your script and warns you if
there is.

WITH (NOLOCK) Policy

In order to ensure peak performance of your database and limit the number of locks and deadlock
potential, most SELECT queries can be run without locks (i.e. by specifying WITH (NOLOCK) for the
table). To make sure you don’t forget to add these statements, this policy validates that each table you

50

select against has this directive. Of course, there will be cases where you need to let the database take a
lock, so to accommodate this, you can instead add a token to your scripts that provide an exception to
the scripts: [NOLOCK Exception: <reason description>]. By adding this tag you tell the policy handler
that you have purposely left out NOLOCK directives and so the policy check should not fail.

Re-runable Script Policy

A robust script is one that won't fail if it’s run more than once in the same environment. In other words,
it check to see if there is an unacceptable condition prior to being executed. In SQL, this is usually
accomplished by adding an IF EXISTS or IF NOT EXISTS wrapper or header to your script. To aid you in
doing this, the program provides methods to create these for you (see Script Creation and Script

Wrappers). If also provides a policy check to make sure that there is at least one of these checks in your
script. NOTE: This is not a fool-proof guarantee that your scripts are truly re-runable, but rather a quick
check to see if there is a statement included.

Qualified Table Names Policy

For improved performance in SQL server, you should make sure that your objects have their schema
qualifier when you reference them. <schema>.<table> This may be the standard “dbo” qualifier:
dbo.Employee or a custom schema that you have created HumanResources.Employee. This policy
checks to see that your table references all contain a schema prefix. NOTE: this is in beta as the
algorithm to try to catch all instances is more complex than you’d think. This may over-catch or under-
catch for some scripts.

Comment Header Policy

For good record keeping and change auditing, it’s great to have change comments in your routines. This
policy will check to make sure you have a fairly standard comment header included in your stored
procedure and function definitions. This policy specifically looks to make sure your definition contains
comments for: Name, Description, Author and Change History. You can easily fulfill this policy by using
the Simple Text Inserts “Insert Comment Header” utility script.

In addition, this policy check looks for “recent” comment additions to ensure that changes are being
appropriate. The threshold is different depending on how the policies are run. If you are saving an
individual script, creating a script through the Direct Database Object Scripting or updating generated

object scripts via updating object scripts feature, the tool will look for comments created either

yesterday or today. If you are running the policy checks via the Tools = Script Policy Checking menu
option, it will look for comments created within the last 40 days. The dates need to be in the
mm/dd/yyyy format.

Stored Procedure Parameter Policy
This is a configurable policy that will enforce that certain parameters be included in a defined set of
stored procedures. The configuration is set in the Enterprise / Team Settings configuration file. You can

filter your stored procedures by Schema and Target database and define the parameter check by
parameter name and parameter data type. If the policy does not find the specified parameter defined in
the signature of a stored procedure that meets the filter criteria, the script will fail the check.

51

Direct Database Object Scripting

Scripting Database Objects

Without leaving Sq/ Build Manager you can create SQL object scripts directly from your designated
database and add them into your Sql Build Project. You can do them one at a time, or script an entire
class of database objects all at once! Here's how...

1. Select a database to be your script source via the Scripting menu's database drop down list:

Sql Build Manager

-7 frckion £2|List %3‘ Scripting | = Loagging %Tmls _':.»' Help

Settings << Select Active Database > [
Server: il _“IDC <« Select Active Database > A
Project File: c:\[AR - !

Build Soripts % |Adventureworks_Copy k |:
Adventureworks_Copy2
Seq# ScriptF Client c
[/ 1000 Versiu:uns master 0 L
_ | {model
En lmsdb b
Update Code Table Populate Scripts
i Update Cade Tabl |
4'? Update Object Create Scripts

2. Once a database is selected, the next menu item list is available, where you can select the
object type:

Sql Build Manager

-7 Action =&|Lisk %BSUipting = Logging %Tools :) Help
Settings Adventurewarks ~
Server: (loc - ;
Project File: c:\E| Add Object Creats Scripts s | @ Stored Procedures %J
Build Scripts N Seripting Options fx | Functions f
Seqtt | SoiptF Script Object ALTER and CREATE ol s
[1000 Yersion Inchude Object Permissions
X B | Tables
Ef Add Code Table Populate Scripts T i
2l Update Code Table Populate Scripts I
g Update Object Create Scripts
Description *: |_

3. Now that you've selected your object type, Sql Build Manager presents you with a list of all
objects in the source database for you to select. You can check one or more. You can also
right-click on any one of them to get a script preview of the object.

52

Add New Stored Procedure Scripts From (local).AdventureWorks =l

Object Mame Altered D ate Created Date
dbo.uspGetBill Ok aterials 2/4/2009 2:44:30 PM 24472009 2:44:30 PM
dbo.uzpGetEmployeetd anagers 244/ 03 P 1:11:11 PM
dbo.uzpGethd anagerE mplopees Preview Object Script Fhd B/13/2008 12:11:05 Ak
[1 dbo.uspGetwherel sedProductD TS 2002 T T2 27)... TAA0/2008 3:07:23 P
[dbo.usplogEmor 10/10/2008 3:18:45 PM 10/10/2008 3:18:45 PM
[dbo.uspPrintE mar 10/10/2008 3:18:43 PM 10/10/2008 3:18:49 PM
[HumanR esources.uspl pdateE mplayesHirel nfo 12/3/2008 344:03 PM 12/3/2008 3:44:03 PM
[HumanR esources.uspU pdateE mplayesLagin 1010/2008 3:20:53 P 10/10/2008 3:15:74 P
[HumanR esowrces.uspU pdateE mployesPersonalinfa . 104942008 1:10:51 PM 10492008 1:10:57 PM

Filter: |
AddCheckedFles | [Cancel

Tatal Objects Listed: 9

4. Once you've selected your objects for scripting, click the "Add Files" button and the scripts
are created. As a means to confirm the selections and give you a chance to exclude
duplicates, you next see a confirmation screen. Files that match (by file name) items already
in your build file are colored in orange. To add the checked files into your build project, click
on "Add Checked Files".

Bulk Add Confirmation

File Marne Current Path

idbo.uzpGetBildiatenals PRC | CADocuments and Settingsimmck echniLocal Settings' T emphdbo. uspG etBill0 i aterials. PRC
dbo.uzpGetEmplovestdanagers.... ChDocuments and Settingshmmckechni\Local SettingshT emphdbo, uspGetE mployeetd anagers PRC
dbo.uzpGettanagerEmplovees.... CA\Document: and SettingshmmckechntLocal Settings\Temphdbo, uspGethd anagerE mployees PRC

* Colored itemns denote pre-existing files %

(¥) Use current script entry for existing file () Create new script entry for existing files

[Add Checked Files l [Cancel l

5. Lastly, you need to tell Sq/ Build Manager how to handle running the files against a target
database; you do this via the configuration pop-up. The same configuration will be applied
to all of the scripts you're adding in this "bulk" fashion. Check out script configuration for all

of your options

53

idd / Edit Build Script

File Mame: <bulk>

Added By: Add Date:

Last Modified By: LastMod D ate:

Target D atabase: Build Sequence #: Time Out [seconds). Script Tag:
|AdventureWorks w | | | | 20 | | Default v

Script Description;
Rall back entire build on failure [

Stip Tranzaction References I

Allow Multiple Committed Runs on
p

zame Server
Corcel

Updating Scripted Objects

Once you have added a database object script to your build project, what happens if you update your
database again and need to re-sync your scripts? Sq/ Build Manager has an answer for that as well.
Because it generates scripts with both a defined extension (.PRC, .UDF, .TAB, .VIW for stored
procedures, functions, tables and views respectively) and a pre-defined header section - it can also
determine how to update those scripts from the source.

1. Start be selecting one (or more) scripts from your project list that have the extensions listed,
and the "Update Object Create Scripts" context menu item will be enabled. From here, you
have two choices: use the settings from the original script header or use the target database
override setting (see that advanced topic).

{ 3 dbo.uspGetManagerEmployees PRC Adventuretriorks Target Default Target Override Target (optional)
L] | dbo.uspGetBilld ik aterialz. PRC Adventurebsiorks | Default Database

Ve ¥

[1000 “ersions Table Update sql

AdventureWorks_Copy

Editiew Script Build Detail

7| Add New Sql Seript (Text) Chrl+N
@ add Mew File Flease Enter a Description
ettings (use with caution) <<
I 1
|<§’ Update Object Create Scripts 2 Using File Default Setting

s.lsing Current Server and Database/Override Setting
Datahaze Mame | g 2 SE=]

ﬂg Expart Selected Script Entries

2. Once you have selected how to re-generate the scripts, you are presented with a
confirmation window (similar to the one from the original scripting), then just click "Update
Checked Files" update the scripts in the project file.

54

Object Updates

Uncheck Al
Script Mame Saource Ohject Mame Source Databaze Saource Server Ohject Type
{dbo.uzpG etBillOfM aterials. PR C dbo. uzpG etBilld M aterialz Adventuretw’orks (lac:al] Stared Procedure
dbo. uzpl etE mployeehd anagers PRC dbo.uzpl et mplayeetd anagers Adventuretw’orks (lac:al] Stared Procedure
[
[Change Scripting Source
[|Update Checked Filez] [Cancel]

3. You can also update the scripts for all scriptable objects in the project file via the

"Scripting = Update Object Create Scripts" main menu option.

5ql Build Manager

-7 Action ==|List | % seripting | =] Logoing 5% Tools (2 Help
Settings << Select Active Database »» =
Server: {loc
Project File: o4 |
Buld Seripts % Scripting Options -
St SaitF Script Obiject ALTER and CREATE A
01 dbo.wiTi Include Object Permissions
o2 dbo.prog = .
= ~dd Code Table Populate Scripts
03 dbo. pron = a e
4 dbo.pred | Update Code Table Populate Scripts
05 dbo. pros - -
Update Object Create Scripts
B dbo. pros |<§> P
017 dbo.prog €2)| Create backout package
A Ab mree TS TEER R T TS e TTert

Creating a “Back out Package”

There may be an instance where after you have already committed a package to an environment that
you realize something is wrong and you need to back out your changes. Since you’ve committed and you
can’t do a rollback, you could restore from a backup copy. Alternatively, you can create a back out
package that will revert your changes. Sql Build Manager can automate much of this back out creation
as long as you have an unaltered version of the database somewhere (i.e. to this BEFORE you apply your
changes to your production database!). To get started, click on the “Scripting - Create back out

package” main menu option.

+ 5ql Build Manager

-} Ackion ==|List '@ Scripting | = Logging 3% Tools 2/ Help
Settings << Select Active Database »> -
Server: (log)
Project File: c:h(
Build Soripts 5% Scripting Cptions
Soa8 | SotF [] seript Object ALTER and CREATE
01 dbo.wiTi Include Object Permissions
o2 dbo.prog - .
= Add Code Table Populate Scripts
Q3 dbo.pro = s i
L4 dbo.prog) Update Code Table Populate Scripts
Ps ilkm iz g Update Object Create Scripts
B dbo.pro
0| F dboprod @) Create backout package
[7 dhn Arae TR B TR T e = e |I}u

55

This will open update the Backout Package form. To change your database source to an unaltered
version of your database, use the “Action - Change SQL Server Connection” menu option, selecting
both your server and database name. The selection will appear in the gray panel for reference. The two
list boxes are as follows:

“Scripts that will be updated” — these are scripts that the Sqgl Build Manager recognizes as having been
scripted through the tool. Because of this, it will know how to re-script them from the new target.

“Scripts that will NOT be updated” — scripts in this list fall in 1 of two categories.

e First, is “Not found on Target Server” — this means that the object in your build package hasn’t
been created on the new source. Since this is a new object, you must decide on your own what
to do with it (i.e. leave it there since it’s new and it doesn’t really matter, or create a drop script

e Second, is “Manual Scripts” — this means that the script is something you wrote, not something
the tool created for you. Because of this, you will need to determine what action needs to be
taken for a back out.

Once you have set the source server and database, reviewed this lists, and set the back out file name
(which will default to “Backout_<original package name>", just click the “Create Back out Package”
button. If there are any errors, the back out package will not be created and you can use the “Help -
View Application Log File” link to view the errors.

56

@ Create Backout Package
-7 Action 7 Help

This tool allows you to create a package that will backout object updates that have been previously comritted.,
It does this by creating a copy of the original package and re-scripts the available objects from an unaltered source,

Please note: Scripts that were manually written and added to the package CAM NOT be re-scripted.,
These will need to be updated by hand as needed.

script "backout” objects from:
Server; [local]
Databasze: Adventure'works_Copy

Backout Package File Name: |Ch\Documents and Settingstmmeckechn\Desktop'B ackout_Adbenture'w’orks.sbm

Scipts that will be updated: Scipts that will NOT be updated:
Script Mame Script Mame
dbo.uzpGetBillOf aterials. PRC Mot Found on Target Server
dbo.uzpEetE mploveshd anagers PRC —
dbo.uspGeth anagerEmplayess PRC dbo. D ataT ypeTest_Procedure. PRC
dbo.uzpGetw'herel sedProductiD.PRC dho.mike test PEC
dbo.uzpLogErmor PRC dbn.mike_t6$t2.F'F|E

dbo.uzpPrintE mar PRC

HumanR esources. uspUpdateE mploveeHirelnfo. PRC
HurnanR esources. uzpUpdateE mploveelogin PRC
HumanR ezources. uzplpdateE mploveePerzonallnfo.F...

Manual Scripts

Test Manual Scnpt =gl

Create Backout Package] [Cancel

Ready. L

Reporting and Adhoc Queries

Script Status Reporting

This process will check across multiple databases to see whether or not the scripts configured in your Sql
Build File (.sbm or .sbx) have been run on those databases and if they have been run, whether or not
they are in sync with the build file.

1. From the main Sql Build Manager window, select Action = Configure Multi Server/Database
Run

57

+ Sql Build Manager

-7 Ackion =E|Lisk %9 Scripting 'E Logging %Tnn

,_j Load/Mew Project File (*.sbm)
Lj Load/Mew Direckory Based Build Conkrol File (¥, sbx)

it

“hange Sql Server Connection

Settings
Add Mew Sgl Script (Text) Zhrl4n
Add Mew File

Import Scripts from Sgl Build Export File

da Bl

Campate Build File Ta...

Expork Scripts To

| s

Caonfigure Mulki Server)Database Run

iy
82

Recent Files

Exit

2. Configure the databases you want to generate the report against. (See Configuring Multiple

Database Targets)
3. From the opened Multiple Database Run Configuration Page, select the Reports = Script

Status Report menu item

] Multiple Database Run Configuration
-7 ackion j Reports

[local] | | Script Status Report |i
Object Comparison Rgbi:urt

| Adventurd AdHoc Query Execution

4. The Script Status Reporting window will display.

#* Multi-Database Script Status Reporting |Z||E|fg|

Select output type: Ei LIMimary v| [Generate Report

Servers to Check: 1

Total # D atabazes to proces:; 3

Ready. Databases Processed: 0 [:]

From this window, you can select the output type you would like for the report.
Summary: A pared down report that shows only scripts that are not synchronized
between the build file and the target database and presents inan HTML document.
HTML: A full HTML report showing the status of all the scripts in the build file. Those
that are out of sync are presented in red.
CSV: A full report showing the status of all scripts in the build file.
XML: A full report of the raw data for all the scripts in the build file.

58

5. To get the report, click the Generate Report button. You will be prompted to provide a file
name to save the report output, and then the program will thread out the processing, collate
the results and present the report in the default viewer for the specified file type.

Object Comparison Report

This report option will scan your configured database and generate hash values for all of the database
objects in them. It will then create a report showing which objects are not in sync with the baseline
database chosen. NOTE: running this report may be very time consuming depending on the number of
objects in the databases and the number of databases configured for comparison.

1. From the main Sql Build Manager window, select Action = Configure Multi Server/Database
Run

Sql Build Manager

-7 Ackion [==|List %3 Scripting 'E Logaing %Too

,_“j‘ Load/Mew Project File {*,sbm)
.j Load/Mew Directary Based Build Contral File (*.shix)

Change Sql Server Connection

Settings
Add Mew Sql Script (Text) Chrl+M
Add New File

o Ko i £

Import Scripts From Sql Build Expart File
Zompare Build File To. ..

*

Expork Scripks To

at

Zonfigure Multi ServeriDatabase Run

I
oy

Recent Files

Exit:

2. Configure the databases you want to generate the report against. (See Configuring Multiple
Database Targets). The database that is configured with the lowest sequence number will be
used as the baseline database.

3. From the opened Multiple Database Run Configuration Page, select the Reports = Object
Comparison Report menu item

&8 Multiple Database Run Configuration

-7 Action J Reports

[local] Script Status Report

| Chject Comparison Report
Ldventurd AdHoc Query Execution

4. The Object Comparison Report form will display.

59

#* Multi-Database Dbject Comparison Report

Select output type: Summary v Script databazes in parallel [threaded)
Servers to Check: 1 Generate Report
Total # D atabazes to process: 3
Server D atabase Status
Ready, Databases Processed: 0 :}

From this window, you can select the output type you would like for the report.
Summary: A pared down report that shows only the objects that are not synchronized
between databases. This report will present the server, database, object type, object
name and status of that object with relation to the base database.
XML: A full report of the raw data for the objects in the database
You also have the option to run the report in parallel/threaded fashion or single threaded. While
the parallel option will generally be faster, it does have the potential to impact the
responsiveness of your computer.
To get the report, click the Generate Report button. You will be prompted to provide a file
name to save the report output, and then the program will begin processing. The status of the
processing on each database is displayed in the table. Once complete it will collate the results
and present the report in the default viewer for the specified file type.
After the processing is completed, the “Additional Analysis” button is enabled. Clicking this
button will present a Comparison Analysis window where you have the ability to change the
baseline database to be any database that was used in the comparison. Selecting a database and
clicking Generate Report will create a new summary report and open it in your default HTML
viewer. Note that this option does not re-scan the databases but rather reuses the data gleaned
in the original run so there is no processing delay or performance impact.

60

BX

Select a databaze from the list below to use as the bazeline

#* Comparison Analysis Z

Databaze

[] (locallsdventursiwiorks Copy
[] (locallsdventursiwiorks_ Copy?
] (local.sdventureiwiorks

[Generate Report

Running Adhoc Queries against multiple targets
This option allows you to run any query you specify against multiple databases at once. These databases
can be spread across multiple servers as well. A report with the collated results is presented in the

format you select.

1. From the main Sql Build Manager window, select Action - Configure Multi Server/Database

Run

5ql Build Manager,

-7 Ackion | ==|List %? Scripting 'E Logging %Too

Lj Load/Mew Project File {*,sbm)
Lj Load/Mew Direckary Based Build Conkral File (*.shx)

s

Change Sql Server Connection

Settings
Add Mew Sql Script (Text) Chrl+M
Add New File

Impart Scripts Fram Sl Build Expart File

do Mo &L

Zompare Build File To. ..

Expork Scripks To

I

Zonfigure Multi ServeriDatabase Run

N
“h

Recent Files

Exit:

2. Configure the databases you want to run the Adhoc query against. (See Configuring Multiple

Database Targets)
3. From the opened Multiple Database Run Configuration Page, select the Reports = Adhoc

Query Execution menu item

61

B8 Multiple Database Run Configuration

-} Action
[local] I_

J Reporks

Scripk Skatus Report

Object Compatison Repark

AdHoc Query Execution

X

4. The query window will display. In this window, you have the option to select the output type for

the report:

CSV - comma separated values

HTML - a formatted HTML report
XML - the raw data retrieved in XML format.
Also through the Action menu item, you can Open or Save a SQL query for reuse.

&* AdHoc Query Execution

-7 Ackion

Select output type:

Servers to Chech:

[(=1[ES

Total # Databazes to pr

C5Y

HTHL
=ML

Fiun Script

Ready,

Databases Processed: O :]

5. Once you have selected your output type and either typed in your query or opened an existing

query from a file, click the Run Script button. You will be prompted for a location and file name

to save the results then the program will then thread out the execution of the script to all of the

database targets you specified in step #2, collect the data, collate it and open the output file in

the default viewer for the specified file type. The columns included in the report are the server

name, database name, row count and then the columns specified in the query you provided.

Stored Procedure Testing

62

Stored Procedure Testing-Setup

Creating your first test configuration
1. You access the stored procedure testing module via the main screen Tools | Stored Procedure

Testing menu option

+ 5ql Build Manager,

-7 Action |=z|List

@ Scripting 5] Logging %’Tools ._-:) Help

Settings
Server:

Project File: c:\Documents and Settingshy

R Database Object Yalidation

| ﬂ Stored Procedure Testing

Build Scripts

| & Datahase Schema SLc\Epting

2. This will open up a new Stored Procedure Test Configuration window. To get going, you will
need to create a new test configuration. Use the File > Open/New Test Configuration menu
option to open up a file dialog window. Type in your file name and click "Open". You will now
see a "Select Database" window populated with the list of databases available on your current
server. A configuration can only address a single database, so if you need to test different stored
procedures on another database, you will need to create another configuration. Note however,
if you have two or more databases with the same stored procedures, you can use a single
configuration across those databases.

Select Database

Set Target Database:
v

[sd]

3. Now that you have your database set, you can start selecting stored procedures and creating

test cases.

Adding Stored Procedures

1. To add your first test case, right-click n the white area on the left (this is where your selected
stored procedures and test cases will soon display) and select the only active option - Add New
Stored Procedure; this will give you the Stored Procedure list:

63

http://sqlsync.googlepages.com/sptest-selectDb.png/sptest-selectDb-full;init:.png
http://sqlsync.googlepages.com/sptest-selectDb.png/sptest-selectDb-full;init:.png

File:

& Sgl Build Manager, :: Stored Procedure Test Conf

Settings

Server:

(local)

Project File: C:%\Documents and Settingsimmmckechi

Run Checked Tests

Check Al

-

| #7 Add Mew Stored Procedure

-

3

—
dd New Stored Procedure Scripts From (local).AdventureWorks @
Object Name Altered Date Created Date
[idbo.uspGetBillOf aterials 2/472009 2:44:30 PM 24472009 2:44:30 PM
[dbo.uspietE mployestd anagers 2/4/2009 2:45:08 P 104942008 1:11:11 P

[dbo.uspGettdanagerE mployess

10/10/2008 3:21:28 PM

671372008 12:11:05 &M

[dbo.uspiG et herelzedProduct D 10/9/2008 1:12:47 PM 743072008 30723 PM
[dbe.usplogErmor 1041042008 3:18:45 PM A10/2008 3:18:45 PM
[dbo.uspPritte ror 1041042008 3:18:43 PM 410/2008 3:18:49 PM
[HumanResources. uspl pdateE mplopeeHirelnfo 124372008 3:44:03 P 12/3/2008 3:44:03 PM
[HumanPesources uspl pdateE mplopeeLogin 10/10/2008 3:20:53 P 10M10/2008 3:19:14 PM

[HumanResources. uspl pdateE mplopeePersonalinfo 10/9/2008 1:10:51 P 10/9/2008 1:10:51 P

Filter: |

Add Checked Fies | [Cancel

Tokal Objects Listed: 9

2. From this list (which shows all of the user stored procedures on the target database that have
not been previously selected), check the stored procedures that you want to create test cases
for (this will eventually be all of them right?) and click "Add Checked Files".

Creating a test case
1. To create a test case, select a stored procedure from the left side list and right-click to pull up
the menu. From this menu, select "Add New Test Case to <sp name>".

64

& Sql Build Manager :: Stored Procedure Test Configuration

Filz

Settings
Server: (local)
Project File: C:\Docurnents and Settings‘rmickechr\Desktopiteteerare . sptest

Run Checked Tests Chack Al

[] dbo.uspGetBill Ok aterials

I

(W] oo uspGeits - = -
Add Mew Test Case to "dbo.uspGetEmployesianagers”
< ks

Add Mew Stored Procedure

I arne: |

Delete Stored Procedure "dbo,uspGetEmployveeManagers” From configuration

Wigw Scripk For "dbo.uspGetEmplovesManagers”

& T K La

Add Mew From Execution Script

2. This will then activate the right side, test configuration section of the screen where you can set-

up the test

Test Caze Defimtion for dbo.uspGetEmployestdanagers

M ame: |GEl Employes Manager | Save Changes

Ewecution Tepe: | RetunData b Get SOL Scnpt
Farameters i i
Inzert Tope Default Y aluss Paste Execution Script
(& mployeel D |E | [sql Query

Expected Results
Success v |Fh:uw Court: Riow Count Operator: | EqualTo - |E0Iumn Count:

Expected Data O utput

Add Expected Output

Calumn Mame: |FirstName | Walue: |Bi|| | R ﬂ:|1 | *,

Test Case Definition

1. Name - required. Sets the descriptive name of the test. This is what will appear in the tree view
on the left of the screen

2. Execution Type - required. A drop down selection of
ReturnData: expects that a result set with 1 or more columns and possibly 0-n rows returned

65

NonQuery: a stored procedure that does not return data (an insert, update or delete for

example)

Scalar: expects that the result set consists of a single data point (i.e. 1 row with 1 column)

Parameters

1.

Parameters - optional based on the stored procedure. These are the parameters derived
from the stored procedure as it exists in the database. The type of each can be displayed by
hovering over the name of the parameter.

Parameters with "Sql Query" set - optional. This will create an array of unit tests, one for
each result set of the query. For example, if the employee table has 10 employees, and you
paste in a SQL statement "SELECT EmployeelD FROM Employees", then save and execute
the test, you will run 10 tests.

NOTE: The query should only return one column of data. Also if there are multiple
parameters, this can be used in combination to create an exponential number of tests.

Expected Results

1.

Result - required. One of 4 result types must be set for the execution of the stored
procedure:

Success: The stored procedure executed properly. No exceptions were thrown by SQL
Server

GenericSglException: If you expect that with your parameter values set, you will get
an execution exception

PKViolation: If you are forcing a Primary Key violation with your parameter values
FKViolation: If you are forcing a Foreign Key violation with your parameter values

Row Count -optional. If you want to check that the proper number of rows is returned with
the stored procedure, you can set this value.

Row Count Operator - optional. Used in conjunction with the Row Count number. It allows
you to specify that the row count be EqualTo, GreaterThan or LessThan the number
specified in the Row Count.

Column Count - optional. If you want to check that the proper number of rows is returned,
you can set this value.

Expected Data Output
You can add as many of these data checks as you'd like by clicking the "Add Expected Output" link

button. For each one, there are 3 settings:

1.

Column Name - required. The name of the column that you would like to perform a data
value check against.

Value - required. The value that you expect in the designated column. NOTE: the value check
is not case sensitive and does perform a trim, so extra spaces are also ignored.

66

3. Row # - optional. The row number of the returned data that should be checked for the
value. If not specified, the first row is checked. Also, for you developers out there, this is a
"1" based value so the first row returned would be Row #1 not Row #0.

Additional Features
= Get SQL Script- generates for you the SQL that will be executed bases on the current parameter
value setting to allow you to cut and paste as needed.

* |nsert Type Default Values - puts in a non-null value for each parameter. For numeric, it adds
the default value of 0. For strings and characters is adds in an empty string. For date/time, it
adds the current date and time.

= Paste Execution Script - if you use SQL server profile, you can paste in the execution script you
glean from there. The tool will parse out the parameters and values and insert them into the
proper place.

Stored Procedure Testing - Execution (Manual and Automated)
Once you have set up your stored procedure tests, you'll of course want to run them, this will explain

how to do that and also interpret the results you see.

Running your stored procedure tests (manual)

1. Execution of your tests is very straightforward. Simply check the tests you want to run (or use
the "Check All" link) and click the "Run Checked Test" button. An execution/results window will
open up and the tests will automatically start.

Stored Procedure Test Configuration

File
Settings
Server: localhost
Project File: C:\Documents and Settings\mmckech

| Run Checked Tests |

Check Al

| [] dbo.uspGetBilOiMaterials
= dbo. uspGefEmplopeetanagers
Gef First Emplopee Manager

Interpreting the results
1. The tool will run through all of the tests you had checked, logging the results for each test and
displaying the summary results in the execution window

67

http://sqlsync.googlepages.com/storedproceduretesting
http://sqlsync.googlepages.com/sptest-run.png/sptest-run-full;init:.png

Stored Procedure Test Results E@@

Passed? SP Name Test Case Name Result Message
Teue dbo uipG et mplopeeManagess Get Fust Emploges Manager Row Count Passed Expected 4. Reteved 4 Colwnn Count Pass
Tedting Coergets Stoved Procedures Tested: 1| Test Cases Run: | Passed: 1 Faded: 0 ()

2. For each test run, you will get a result row, with an success/failure indicator, the stored
procedure name, the test case name and the results summary.(Note: if there is a failure, the
row will be highlighted in red). There is also a summary across the bottom, listing the number of
stored procedures that were tested, the number of test cases executed, the number passed and
the number failed.

3. To view the result details of the test, you can right-click on the results row and select "Show
Detailed Results". The detail window will pop-up. In the top section you will get the same
information as the summary, however the results is now fully displayed showing all of the
criteria that were used in the test and the actual results retrieved. In the bottom section, the
actual SQL that was executed is shown in case you need to retrieve it for another use.

+# Test Case Detailed Results E]@

Test Case Result:

lstored Procedure: dbo.uspGetEmployeeManagers

Test Case Name: Get First Employee Manager

Passed? True

Results:

Row Count Passed. Expected 4, Retrieved 4

Column Count Passed. Expected 7, Retrieved 7

Value Check Passed. Column: LastName, Row# 1. Expected 'Brown’, Retrieved 'Brown’

Executed SQL:
exec AdventureWorks.dbo.uspGetEmployeeManagers @EmployeelD="1"

Saving the results

If you need to save your results for later review or for proof of testing, you can do that too. From the
results summary page, you can right-click and display the menu. Select the "Save All Test Results". The
resulting file will be an XML document that contains all of the detailed information regarding the test

68

http://sqlsync.googlepages.com/sptest-results.png/sptest-results-full;init:.png
http://sqlsync.googlepages.com/sptest-result-detail.png/sptest-result-detail-full;init:.png
http://sqlsync.googlepages.com/sptest-results.png/sptest-results-full;init:.png
http://sqlsync.googlepages.com/sptest-result-detail.png/sptest-result-detail-full;init:.png

execution that you can get via the forms above, plus the name of the target server, target database, and
start and end times. Also, the test case definition is included with each result.

Stored Procedure Test Results

Close

Passed? SP Name T
[e Y re——
Show Detaled Results
Save Al Test Reauts
hg

Automating stored procedure testing
You can easily automate your stored procedure testing by taking advantage of the console helper
executable and command-line execution. Running a stored procedure test, you will need 4 command

line parameters:

» /test=".sptest config file" -informs the tool that you will be performing a stored
procedure test execution using the supplied test configuration file.

» /server=serverName - sets the target server to connect to
» /database=target server - setsthe target database to run the stored procedures on
* /log=logfilename.xml - sets the name of the XML results file you want the results sent to.

Example: SglBuildManager.Console.exe /test="test3.sptest" /server=myserver /database=myDb
/log="C:\logfile.xml"

Additional Program Information

Associated File Types
The application has multiple file types associated with it at install time. These files serve many purposes
for different features of the application.

e .sbm: @ Single file package that contain the scripts, script metadata and run result history
for the package.

e .shx: XML configuration file. This contains the script metadata for run time settings. The
scripts are assumed to be in the same folder as the .sbx file. This file can be packaged into a
single .sbm file via the Action = Package Scripts into Project File (.sbm) menu option.

69

http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png
http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png
http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png

e .sbe: ‘@ A “Sql Build Export” file. The product of an export of scripts from a .sbm file. This is
essentially the same as a .sbm file, but is used to denote scripts that are intended to be
imported into another sbm file.

70

7 2|
e .multiDb: l,}ﬁj Multi-database execution configuration file. See Configuring Multiple Database
Targets.

P!
e .multiDbQ: Fgg Multi-database configuration query file. See Create Configuration via Query

e audit: ~-ga auditing script creation template file. These files are used to create a group of
tables that require data auditing. The program can then generate audit tables and triggers for

these tables.

e .sqlauto: Eﬁa configuration file for automated schema scripting. This can be used for
creating a scheduled task to generate DDL scripts for databases on a regular basis

2

e .sts: “=¥ Sql Table Scripting. A configuration file of “look-up” or “code tables”. From this, the
program can create script files that can be used to replicate their contents to other
environments. These scripts are re-runable and handle both inserts and updates of values.

:
e .sptest: “¥ Stored Procedure test configuration file. With not programming, the application
can create unit tests for stored procedures. You can supply standard or query based input values

and interrogate execution times and return values to determine pass/fail criteria.

Database Analysis
Sqgl Build Manager has the built in features to run size and utilization analysis against a SQL server.

5ql Build Manager

-7 Ackion ==/ b = S Tools | Help

Settings Database Object Yalidation
Server: (local) .
. Stored Procedure Testin
Project File: {select / create project) 9
Build Seripts Database Schema Scripting 't
Seq# | Script File Code Table Scripting and Auditing

User Daka History and Audit Scripting

Data Extraction

B @ B 4 B [30

Create Scripts from Extracked Data

=

Database Analysis .

71

Server Analysis

1. Upon selecting the Tools - Database Analysis menu option, the Database Size Summary

window will open. On loading, it will begin scanning the current server (as identified in both the

title bar and the “Recent Servers” drop down box to gather the data.

#* Database Size Summary :: {local)

Settings
Server: (local)

Recent Servers:

Database Mame Date Created/Last Restare
Advent forks B/26/2008 2:33 P
AdventuretWorks_Copy BA26/2008 10:14 Ak
AdventuretWorks_Copy2 B/26/2008 2:39 PM

mazter 4/8/2003 3:13 AM

model 4/8/2003 3:13 AM

mzdb 10M14/2005 1:54 A
SqBuildTest 12/19/2008 2:26 PM
tempdb 441342009 1:19 P
Testing 11/25/2008 4:31 P

Size [ME)
197

181

181

4

2
E
4
2
4

Location

C:%Program Files\Microsoft SOL ServersdSSOL 255 SALAD at
C:WProgram Files\Microsoft SOL ServersMS50L 2WMA 550D A
C:WProgram Files\Microsoft SOL ServersMSSOL 2WSSGLADA
C:%Program Files\Microzoft SOL ServersMSSOL 2AMSSOLADA
C:%Program Files\Microzoft SOL ServerMSSHL 24 S501LADA
C:%Program Files\Microzoft SOL ServerMSSOL 244 S50LADA
C:%Program Files\Microsoft SOL ServersMSSOL 2AMESALADA
C:%Program Files\Microsoft SOL ServersMSSOL 23S SALADA
C:%Program Files\Microsoft SOL ServersdSSOL 235 SALADA

2. Once the scan is complete, you the grid will be populated with four pieces of data for each

database associated with the server:
e Database Name — fairly obvious!

e Date Created/Last Restore — this is the date that the associated master database has for

the creation date of the database. This date is updated whenever a database is restored

from a back-up as well

e Size (MB) — again, fairly obvious. This is the size that SQL Server has allocated for the

database MDF file.

e Location — The physical drive path where the MDF file is located. Note that the path is

relative to the SQL Server, not your local machine.

3. You can run analysis on another server by changing the database selection in the “Recent

Servers” drop down

Individual Database Details

1. From the Database Size Summary form, you can gather individual database details by right-

clicking on the database and selecting the Get Database Details menu item.

@ Database Size Summary :: {local)

Settings
Server: (local)

[atabagze Mame

Adventure ok s Copy
Adventureworks Copyd
2. The size analysis for the selected database will run and load the data form. This contains data

[rate Created/Last Restore

Cul

Get Datahaie details

E£2E£2DDE\§2:39 Pt

about each table in the database. (These columns are all sortable)

72

e Table Name — obvious.

e Row Count —the number of rows that SQL Server currently reports from its statistics

(not always the same as a “SELECT count(*)...” query, but generally very close

e Data—the size of the data stored in the table (in KB)

e Indexes - the size of all of the indexes associated with the table (in KB)

e Unused —the amount of space that is allocated to the table but it currently empty (in

KB)

e Total —the total amount of space that SQL Server has allocated for this table and all of

its indexes

e Average Data —the average amount of space used per row in the table

e Average Index — the average amount of space used per row for all of the indexes on the

table

-
#* Database Size Analysis for AdventureWorks

Table Size Data {All sizes are in KB)
Table Marme Row Count Data Indexes Unused Total Average Data Average Index A
3 Sales. Individual 15,484 24,672 50,160 784 75,616 1.335 2,714
Sales.SalesOrderDetail 121,317 9,850 5,312 6585 15,880 0.081 0.044
Production, TransactionHistory 113,443 6,304 3,192 424 9,920 0.056 0.025
Sales.SalesOrderHeader 31,465 5,592 2,384 4485 8,424 0.178 0.076
Production. TransactionHistory Archive 89,253 4,960 2,568 520 8,048 0.056 0.029
Production.waorkOrderRouting 67,131 5,544 1,040 408 6,992 0.083 0.015
Person.Contact 19,972 4,504 2,000 354 6,585 0.226 0.100
Production. warkOrder 72,591 4,192 1,532 328 6,352 0.055 0.025
Person.Address 19,614 2,224 2,440 295 4,960 0.113 0.124
Sales,CreditCard 19,115 1,495 -] 176 2,448 0.075 0.041
Production.ProductPhoto 101 2,256 16 g 2,392 22,337 0.155
Sales.Customer 19,185 Gz4 1,176 336 2,336 0.043 0.061
dbo.Databaselog 451 1,616 24 S 1,696 3.583 0.053 “w
Ready
:

Data Extraction and Insertion

Sqgl Build Manager has the ability to extract non-binary data out of a table and store it in a formatted file.
Conversely, it can take this formatted data and create pairs if INSERT/UPDATE statements for reinsertion

and or updating of this data. It can also be used to synchronize data between environments.

NOTE: There is a current limitation with this extract. It will not properly handle data that contains in-line

carriage returns. This will cause a formatting error of the insert/update scripts.

Data Extraction

1.

Open the Data Extraction form via the Tools = Data Extraction menu item from the main

window

73

Sql Build Manager

<7 Action == W ¢ Taals |2 Help
Settings ﬂ Database Object Validation
Server: {local) ﬁ Stored Procedure Testing

Project File: (select / create project)

Database Schema Scripting

| Seq # | Script File Code Table Scripting and Auditing

i
-
User Diata History and Audit Scripting
| [DataExtraction

2% Create Serinks Fram Fytracted Daka

2. On the Data Extract window, you will need to do the following:

a. Select your output directory via the Action - Change Destination Folder menu .

b. Select your source database with the “Select Database” dropdown list. (You can change
your server via the Action > Change SQL Server Connection menu item or the Recent
Servers list)

c. Once you select the database, the Tables to Script list will populate with the table list
for that database as well as the row count for each table.

d. Next, check the tables you want to extract from and click the “Extract Data” link.
The files that were created display in the “Extract Results” list. If you want to open a
file, you can right-click on it and select “Open File”.

¥ Sql Build Manager :: Data Extraction

-? Action (7]
Settings Recent Servers: |(Ioca|) ﬂ
Server: {local)
Destination Folder: C:\Docurnents and Settings\mmekechri\Desktophoutput
Select Database:
|AdventureW0rks ﬂ -
Tables to Script: Check all Extract Results:
Table Name Row Count | # File Marne | Size (Kb |
Orerson.address 19514 Person.CountryRegion.data g
Orerson.address_audit a
Orerson.addressType &
O dbo.suditTransactionMaster i}
O dbo.awBuildversion 1
O rroduction.BillofMaterials 2679
Orerson.Contact 19972
O sales.ContactCreditCard 19118
Orerson.ContactType 20
Person.CountryRegion 238
O sales.CountryRegionCurrency 109
O zales.creditcard 19115
Extraction Complete

Data Insertion Script Creation
Once you have extracted data, what are you to do with it? Well, you can always generate scripts to put it
back! This is useful create a restore for a table and also to move data easily from one environment to

74

another. In order to get it back into a table, you’ll need to create the INSERT/UPDATE script
combinations for the extracted data.

1. Open the Data Extract Script Creation Form via the Tools = Create Scripts from Extracted
Data menu option.

5gl Build Manager

-} Ackion == - % Tools |2 Help

Settings Database Object Yalidation
Server: {local)
Project File: {select / create project)

Stored Procedure Testing

Database Schema Scripting

| Seq it | Script File: Code Table Scripting and Auditing

User Data History and Audit Scripting

Data Extraction

Create Scripts from Extracted Data |

e B g & =W

2. Open a data extract file (*.data) via the Action = Open Data Extract File menu item. Once you
select the file, its contents will be loaded into the top text box and the script creation process
will be kicked off. The generated scripts are displayed in the bottom text box. These scripts are
suitable to be copied and pasted into a Sqgl Build Manager project file or SQL management
studio window for execution.

Sql Build Manager :: Data Extract Script Creation

-7 Action (7]
Source File Contents:

I »
Source Server (loeal)

Source Db Adventureiworks

Process D ate: 472072009 §:43:24 &M
Table Scripted: Perzon. CountryFR egion
Scripted By: rimckechn

F.ep Check Columng CountryRegionCode

Queny Used: 2
SFIFCT IFanmntniR aninn™ade] Tharma] Thd adifiedAN atel

INSERT/UPDATE scripts:

IFNOT EXISTS [SELECT * FROM [Person].[CountryR egion] WHERE [CountryR egionCode]='a0" ~
BEGIN
INSERT INTO [Person) [CountrvRegion] [[CountryR egionCode] [N ame] [ModifiedD ate]] ¥ALUES [AD','Andorra’,'B41./1998 12:00:00 AR
PRIMT 'Inzerted Fow 0'
EMD
ELSE
BEGIM
UPDATE [Person] [CountryRegion] SET [Mame]="Andars’ [MadifiedD ate]="6/1/13398 12:00:00 2" WHERE [CountryRegionCode]="40"
PRINT 'pdated Row 0°
EMD v

Ready

Database Object Validation

Do you know if your database views, stored procedures and functions are all in sync? Are all of your
table references correct? This functionality attempts to scan your database and alert you of potential
errors — before you find them at runtime. The validation consists of the following checks:

75

e Execution of sp_helptext system procedure for the objects: This checks to ensure that there is no
discrepancy in the object registration in the database

e SQL parsing: Runs a SQL server query parse for the object definition. This uses SQL server’s built-
in functionality to run through the definition and check for the validity of referenced tables,
columns, views, etc

e Execution of sp_depends system stored procedure for the objects: Another means for SQL Server
to check the validity of table references. NOTE: If there is a cross-database join. SQL server will
not necessarily detect the dependency, in which case the validation will return a status alerting
you of such.

1. Open the Database Object Validation form using the Tools > Database Object Validation
menu item.

Sql Build Manager

o7 Action == 5 % Tocls | C2) Help
Settings |Q Database Object Yalidation |
Server: (local))
. Stared P d Tesk
Project File: (select / create project) ﬂ nredFrocedurs Testing
4 Database Schema Scripting
r T T | - e = e e

2. Onthe form, select the database you want to check in the database dropdown list. (You can also
change your SQL Server connection via the Action - Change Sql Server Connection menu
option or Recent Servers list).

¥ SqlBuild Manager, :: Database Object Validation

-7 Ackion !
Settings Recent Servers: |(|°Ca|) ‘
Server: (local) -
Select Database: . . ;
Warning! Invalid Objects Detected.
adventureWorks ﬂ Validate COhjects | Cancel |
Chbject Narne | Type | Results | Status Type ~
dbo.uspPrintErrar P Invalid Table Reference? Mo Table Dependencies found. Caution
dbo.ufnGetSalesOrderstatusText FI Invalid Table Reference? Mo Table Dependencies found. Caution
dbo.ufnGetPurchaseOrderStatusText FI Invalid Table Reference? Mo Table Dependencies found. Caution
dbo.ufnGetDocurnentStatusText FI Invalid Table Reference? Mo Table Dependencies found. Caution
dbo.ufnGetaccountingEndD ate FI Inwalid Table Reference? Mo Table Dependencies found. Caution
dbo ufnzetAccountingstartDate FI Invalid Table Reference? Mo Table Dependencies found, Caution
Purchasing wYendor W Valid Valid
Sales.wStoreWithDermographics W Valid Valid
Person.wStateProvince CountryRegion W Valid Valid v
Complete
:

3. The list will populate with the checked Stored Procedures (type ‘P’), Function (type ‘FN’) and
Views (type ‘V’). There are 4 status types that you can get in the result:
a. Valid — self explanatory. The object passes the validation tests
b. Invalid —again, self explanatory. The object fails one of the validations. You will get a
detail of the failure in the Results column.
¢. Caution —a warning. This doesn’t necessarily mean that the object is invalid, but will let
you know what to look for in the Results column.

76

d. Cross Database Join — another warning. The tool detected a possible join across
databases and lets you now that is could not fully validate the references.

If there are any items that do not return a Valid status, the warning message will display.

Rebuilding Previously Committed Build Packages

One of the useful features of the logging that Sql Build Manager performs is that it allows the tool to
also reverse engineer a build package that has been committed to a database (or combination of
databases). This allows you to re-create a package with all of the scripts of the original to archive off, or
run against another environment.

1. Open the Rebuild Sql Build Manager File form with the Tools = Rebuild Previously
Committed Build File menu item

Sql Build Manager,

-7 Action =z e = S Tools |7 Help
Settings Q Database Object Yalidation |
Server: {local) .
. Stored P dure Testi
Project File:{select / create project) ﬂ IRl TS Ve
Build Scripts I _:g Database Schema Scripting ;
Seq#t | Script File EKE Code Table Scripting and Auditing
User Data History and Audit Scripting
|| Data Extraction
@ Create Scripts From Extracted Data
Ll Database Analysis .
Auko Scripting 3
|=FEE Rebuild Previously Commited Build File | t

2. When the form opens, it will automatically scan the server you are connected to. It will populate
the table with all of the build files that it found, originally sorted in reverse chronological order.
Also in the list are the database(s) that the build file was run against, and the number of scripts
that were included in the file. You can change the server via the Action - Changes Sql Server
Connection or Recent Servers drop down

Rebuild Sql Build Manager, File

;7 Action (?]
Settings Recent Servars | [local) Vl
Server: (local)
Build File Mame D atabase(s) Committed D ate Mumber of Scripts 75
qqqqq.zbm Adventurewiorks 12/29/2008 3:45:14 P 1
transaction_test.shm SqBuildTest 12M59/2008 4:21:26 PM 2
transaction_test.shm SqBuildTest 12M59/2008 416:22 PM 2
transaction_test.shm SqBuildTest 12M15/2008 2. 2745 PM 3
trangaction_test.sbm Adventureworks 12M159/2008 20728 PM 2
tranzaction_test.sbm Adventurgwiorks 12/19/2008 2:02:53 PM 3
test.shm Adventureiwiorks 121142008 3:55:53 PM 1
MultiDb Testing.sbm AdventureWork s Adventure'Works_Copy 124342008 3:44:03 PM 10
MultiDb Testing.sbm Adventurewiorks_Copy2 12/3/2008 344:03 PM 5 B
b IKD kT achive chen A b wehs ol oo dusamb rebadorkes Camed 190209000 24317 Dh 15
Ready, []

3. Once you pick a build file to reconstruct, select it in the list, then right-click and select Rebuild
File context menu item. You will then be prompted where to save the file.

77

Rebuild Sql Build Manager, File

-7 Action

Settings
Server: {local)

Build File Mame Database(s)

Adventuretworks Audit. sbm Adventureworks
Adventurel _shm 3

dventurel

Adventureworks Audit b Rebuild File biventurewors
fBfEb3chcE 344851 a7 cdfbObedf 03T S0m bt Bdventureworks
FRFER B4 A0 21 2 TedbhMThaOdf a2 che A csmimb et o

4. After the rebuild is completed, you will be prompted whether or not you want to open this new
file. Selecting “Yes” will... you guessed it... open the file

9

\".f) Reconstruction Complete. Open Mew Build File?

I Yes l ’ Mo]

5. Once the file opens, you will notice that all of the scripts are marked as “Run Once”. This may or
may not have been the original setting. The logging does not record your runtime settings, so it

defaults to the “safest” setting. You can however, update these settings as needed for you to
reuse the package.

+ Sql Build Manager

-7 action ==|list % sScripbing) Logging S Tools L2 Help
Settings
Server: {local)

Project File: c:"Documents and SettingshmmckechnyMy Docurmnentshadven

Build Scripts
Seq# ScriptFile Databaze Mame Tag
1 Audit b aster Table sql Adventureorks
2 Perzon.gddrezs Audit Triggers. sql Adventure'Works
3 Sales. Custorner Audit Table. sl Adventuneorks
oy 4 Production. Culture. pop Adventure'Works
- (=S PN P I Aocscmb et mele

Enterprise / Team Settings

This feature in Sql Build Manager allows you to manage certain settings for a team, rather than having
an isolated/ per installation settings. This is managed by a settings configuration file that needs to be
accessible by all of your users.

Enterprise/Team Settings Configuration File

The team settings are controlled via a common configuration file that each installation can read from.
This can be handled via either placing this file in a common file share or making it available via an http
URL. If for some reason the file is not readable, the tool will use settings it was last able to retrieve. The
configuration file in an XML formatted file conforming to a specific XSD schema (this schema is called
EnterpriseConfiguration.xsd and can be found in your installation folder).

78

appSettings Key/Value Pair

To point your Sqgl Build Manager installation to the team configuration file, you will need to edit the
application configuration file Sql Build Manager.exe.config. In this file add or edit the appSettings
section’s key “Enterprise.ConfigFileLoation” and set the value to either a file share location, UNC path,
or HTTP URL where you team settings file can be found. Upon restarting the application, it will now use
this file for team settings.

SRR PV Mo LA TS | M LA 4 P A & miei—
cadd key="Enterprise.ConfigfFilelacation™ value="I:'mmckechney'5ql Build Manager‘Enterprise\Enterpr:

</appsettings>

<system,webs

Script Change Settings

Table Change Watch
This team setting lets you put “alerts” on table changes. It detects ALTER TABLE and DROP TABLE change

scripts upon saving from the Edit Script Text window. It then compares these table change scripts
against a list of tables that are being “watched”. If there is a match, the alert window is displayed. This
window gives the following information:

e Notice that this is a Table Change Watch, what it is and how to send the notification

e A description of the alert — should explain what the alert is for

e Alist of tables modified — list the tables altered in your script that matched an item in the watch
list

e Alist of folks that wanted the alert.

To give these folks their notice, you’ll need to click the “Send Notification” button (for each alert box if
there is more than one). This will open your default e-mail program with a configured, populated e-mail
— just click “Send”.

79

Change Notification Alerts

Table Change Watch

It appears you have made changes to one or more tables that has a watch alert assigned.
The following people have asked to be notified if the tables are modified.

** Click "Send Notification” to send an e-mail with the change detail **

Alert Description:
Tables used in the policy and template copying

T ables Modified: Alertt Requested by:

TranzactionT est Michael Mckechney

Send Matification]

Cloze

Configuring Table Change Watch

The file can contain one or more <TableWatch> elements and each of these can contain one or more
Table and Notify elements. You can use any XML editor to help you create the file, but one that can
validate against the schema will be the most helpful.

<?zml version="1.8" encading="utf-5" >
<EnterpriseConfiguration smlns="http:/ www.mckechney.com/EnterpriseConfiguration.xsd™>
<Tablellatch Description="Sample Table Watch™ EmailBady="0One of your watched tables has changed” EmailSubject="Alert Notice’
<Table llame="5qlBuild logging™ />
<Table lame="TransactionTest™ />
<latify EMail="michael@@mckechney.cam™ llame="Michael Mckechney™/ >
<llotify EMail="helpfisqlbuildmanager.com™ [lame="5ql Build Admin™/ >
</Tablelatch>

</EnterpriseConfiguration:

Script Policy Settings

Script policies are enforced via configuration so you can turn them on and off as needed. This is handled
via <ScriptPolicy> elements in the EnterpriseConfiguration.xml file. Each script policy will have its own
element and Policyld value. You can turn off policy enforcement by either removing the element or
setting the Enforce attribute value to false.

The current list of Policyld’s is:

e CommentHeaderPolicy

e ConstraintNamePolicy

e GrantExecutePolicy

e GrantExecuteToPublicPolicy
e QualifiedNamesPolicy

e ReRunablePolicy

e SelectStarPolicy

e StoredProcParameterPolicy

80

WithNoLockPolicy

<ScriptPaolicy
<ScriptPalicy
<ScriptPaolicy
<ScriptPalicy
<ScriptPaolicy
<ScriptPalicy
<SeriptPaolicy
<ScriptPalicy
<Argument
<Argument
<Argument
<Argument

Policy
Palicy
Policy
Palicy
Policy
Palicy
Palicy
Palicy

[lame=
[lame=
[lame=
[lame=

<«/ScriptPolicy>

Id="ConmentHeaderPolic

Id="ConstraintilamePoli
Id="GrantExecutePolicy™,
Id="GrantExecuteToPublicPolicy™/ >
Id="QualifiedlamesPolicy™/ >
Id="ReRunablePolicy™
Id="5elect5tarPolicy™/>»
Id="5StaredProcParameterPolicy™

fr

"Schema” Value="
"Parameter” Value="@CustamerId”/ >
"SqlType” Walue="INT" />

"TargetDatabase™ Value="Client” />

The StoredProcParameterPolicy is additionally configurable with 4 “Arguments” that are added via

<Argument> sub-elements. The allowed argument names are:

Schema — a stored procedure filter setting. Selects the schema that the stored procedure must

TargetDatabase — a stored procedure filter setting. The target database that the stored

Parameter — the name of the stored procedure parameter (with the “@”) that you want to make

o
belong to in order to “match” for the policy check.
o
procedure needs to be targeted toward in order to “match for the policy check.
o
sure is included in the stored procedure signatures.
o

procedure signatures.

Feature Access Settings

SqlType —the SQL type of the parameter that you want to make sure is included in the stored

There is the ability to activate/deactivate features by user. Currently, the only feature that is under

control is the access to the Remote Execution Service. The <FeatureAccess> element contains both a

Featureld attribute (currently, only “RemoteExecution” is valid) and a Boolean value of Enabled. A sub-

element of <Allow> takes a Loginld value that should be set to the userid of the user that has access to

the particular feature.

<Featurelccess Featureld="RemoteExecution” Enabled="true™:
<Allow LoginId="\m

¢/Featurelccess»

~</EnterpriseConfiguration:

=" />

81

