
1

Sql Build Manager - User Manual

Michael McKechney (michael@sqlbuildmanager.com)

www.SqlBuildManager.com

For: Sql Build Manager v8.6.8

Copyright ©2004-2010

Sql Build Manager is an open source project maintained by Michael McKechney on SourceForge.net

STARTING TOPICS ... 4

GETTING STARTED ...4

CONNECTING TO A DATABASE .. 4

CREATING YOUR FIRST SQL BUILD MANAGER PROJECT FILE ... 5

ADDING SCRIPTS TO YOUR PROJECT .. 5

SCRIPT CONFIGURATION: SETTING RUN TIME RULES... 8

BULK ADD .. 9

BULK ADD FROM LIST ... 10

BULK ADD FROM TEXT FILE ... 10

CHANGING SQL SERVER CONNECTION .. 11

CHANGE SQL SERVER MENU OPTION ... 11

RECENT SERVERS LIST ... 11

RUNNING YOUR SQL BUILDS .. 12

RUN TIME BUILD SETTINGS .. 12

EXECUTING YOUR BUILD PROJECT ... 13

EXECUTING THE FULL PROJECT .. 13

EXECUTING SELECT SCRIPTS.. 15

BUILD LOG INFORMATION.. 16

BUILD HISTORY.. 16

DATABASE LOGGING .. 17

BUILD FILE SQL LOGGING ... 17

VALIDATING A BUILD PACKAGE ... 18

BASIC COMMAND LINE EXECUTION ... 18

COMMAND LINE ARGUMENTS .. 18

AUTO-CREATION OF COMMAND LINE STATEMENTS ... 19

CONFIGURING THE COMMAND STATEMENT .. 19

GENERATING THE COMMAND STATEMENT ... 22

mailto:michael@sqlbuildmanager.com
http://www.sqlbuildmanager.com/
http://mckechney.com/
https://sourceforge.net/projects/sqlsync/

2

COMMAND LINE EXECUTION VIA UI .. 23

COMMAND LINE EXAMPLES ... 23

TARGETING MULTIPLE SERVERS AND DATABASES .. 25

CONFIGURING MULTIPLE DATABASE TARGETS .. 25

MANUAL SEQUENCE ASSIGNMENT ... 25

AUTO SEQUENCE LIKE-NAMED DATABASES ... 26

CREATE CONFIGURATION VIA A QUERY .. 27

THREADED MULTI-SERVER DATABASE EXECUTION ... 28

SET-UP ... 28

REMOTE SERVICE EXECUTION AND DEPLOYMENT .. 29

OVERVIEW ... 29

SECTION DETAIL .. 30

PRE-TESTING DATABASE CONNECTIVITY ... 35

PERFORMING A REMOTE EXECUTION ... 35

ADVANCED COMMAND LINE EXECUTION .. 36

EXECUTION FLAGS .. 36

LOGGING ... 38

COMMAND LINE RETURN CODES ... 39

EXECUTION RESULT CODES .. 39

ADVANCED SCRIPT HANDLING ... 40

UTILITY SCRIPTS .. 40

UTILITY SCRIPT EXAMPLE .. 41

SIMPLE TEXT INSERTS ... 42

TOKEN REPLACEMENTS ... 43

SCRIPT CREATION .. 43

SCRIPT WRAPPERS ... 45

SCRIPT MANIPULATION AND OPTIMIZATION ... 47

SCRIPT POLICY CHECKING .. 49

MANUAL POLICY CHECKING OF BUILD PACKAGE ... 49

GRANT EXECUTE POLICY ... 50

GRANT EXECUTE TO [PUBLIC] POLICY .. 50

WITH (NOLOCK) POLICY .. 50

RE-RUNABLE SCRIPT POLICY .. 51

QUALIFIED TABLE NAMES POLICY ... 51

COMMENT HEADER POLICY ... 51

3

STORED PROCEDURE PARAMETER POLICY .. 51

DIRECT DATABASE OBJECT SCRIPTING .. 52

SCRIPTING DATABASE OBJECTS ... 52

UPDATING SCRIPTED OBJECTS... 54

CREATING A “BACK OUT PACKAGE” .. 55

REPORTING AND ADHOC QUERIES .. 57

SCRIPT STATUS REPORTING .. 57

OBJECT COMPARISON REPORT .. 59

RUNNING ADHOC QUERIES AGAINST MULTIPLE TARGETS ... 61

STORED PROCEDURE TESTING .. 62

STORED PROCEDURE TESTING-SETUP.. 63

STORED PROCEDURE TESTING - EXECUTION (MANUAL AND AUTOMATED) ... 67

RUNNING YOUR STORED PROCEDURE TESTS (MANUAL)... 67

INTERPRETING THE RESULTS ... 67

SAVING THE RESULTS .. 68

AUTOMATING STORED PROCEDURE TESTING ... 69

ADDITIONAL PROGRAM INFORMATION .. 69

ASSOCIATED FILE TYPES ... 69

DATABASE ANALYSIS ... 71

SERVER ANALYSIS .. 72

INDIVIDUAL DATABASE DETAILS .. 72

DATA EXTRACTION AND INSERTION ... 73

DATA EXTRACTION ... 73

DATA INSERTION SCRIPT CREATION .. 74

DATABASE OBJECT VALIDATION ... 75

REBUILDING PREVIOUSLY COMMITTED BUILD PACKAGES .. 77

ENTERPRISE / TEAM SETTINGS ... 78

4

ENTERPRISE/TEAM SETTINGS CONFIGURATION FILE .. 78

APPSETTINGS KEY/VALUE PAIR .. 79

SCRIPT CHANGE SETTINGS .. 79

TABLE CHANGE WATCH .. 79

CONFIGURING TABLE CHANGE WATCH .. 80

SCRIPT POLICY SETTINGS ... 80

FEATURE ACCESS SETTINGS .. 81

Starting Topics

Getting Started

Connecting to a database

Sql Build Manager requires a connection to SQL Server to start. This is because 99% of its functionality

needs a live connection to work.

1. To get started, run the Sql Build Manager.exe to bring up the connection window:

The SQL Servers dropdown will scan your network for broadcasting servers. Once it has done
this it will populate the list. If you don't want to wait or know your server name anyway, you can
just type it in.
You can also maintain a list of commonly used servers in the registered Servers list at the
bottom. To do this, right-click on the Registered Servers icon and use the pop-up menu to guide
you.

5

2. There are 2 authentication options, Windows Authentication or SQL Server authentication. By
default, it will use Windows Authentication. To enter a SQL Server ID and password, just
uncheck the box. Now that you're ready to connect, click "Connect" (Don't worry, you
can change your SQL Server connection after the application is open)

Creating your first Sql Build Manager Project file

To get started, you'll want to create a project file to store your scripts and the run configurations. You

have two options when working with Sql Build Manager projects:

Sql Build Manager Project File (.sbm) – this is a single self contained file that will hold all of your scripts

and script runtime metadata. The benefits of this type of file is that by having only one file to manage,

you maintenance and sharing of your scripts if simplified. This is especially recommended if you need to

hand off your packages to a separate group for deployment.

Sql Build Manager Build Control File (.sbx) – this file just contains the run time metadata for your scripts.

The scripts are kept “loose” and are saved in the same folder as the .sbx file. This option works well

when you want to track your scripts in source control as the text changes will be captured (vs. the binary

format of the.sbm file). You can convert a .sbx file into a .sbm file for deployments using the Action 

Package Scripts into project file (.sbm) menu option

1. Use the Actions  Load/New Project File (*.sbm) or the Action  Load New Directory
Based Build Control Files (*.sbx) menu option to open the file dialog. Navigate to the directory
you want the file created and name your project. Just click the "Open" button to create the
project shell.

Now you're ready to start adding scripts to your project file. See "Adding Scripts"

Adding Scripts to your project

There are 2 basic ways to get your scripts into a project: by adding an existing file or adding the script

text, but there are several methods to get access to these:

 Right-Click in the Build Scripts section and select one of the "Add New..." options

http://sqlsync.googlepages.com/changingsqlserverconnection

6

 From the Actions menu, select one of the "Add New..." options

 Perform a Bulk Add via the "List" main menu option - see Bulk Adding Scripts for details

 Drag and drop files from windows explorer onto the Build Scripts section

 Drag and drop list entries from one Sql Build Manager instance into the Build Scripts section of

another

Each of these methods will then prompt you to configure how you want the script to be run and against

what database.

Adding an Existing File

To add a pre-saved script file, you will select one of the "Add New File" menu options. This will present a

dialog window for you to select the script to add. By default, it will fiter for .sql files, but you can filter

http://sqlsync.googlepages.com/bulkaddingscripts

7

for any number of types, and of course an "All Files". After you make your selection and click "Open" you

will need to Configure your Script to determine how you want it to run.

Adding Script Text

To add a script that you will type or paste into your project file, you will select one of the "Add New Sql

Script (Text)" menu options, or use the hot-key "Ctrl-N". In this form, you will need to add a script name,

the script itself and then Configure your Script to determine how you want it to run.

http://sqlsync.googlepages.com/scriptconfiguration
http://sqlsync.googlepages.com/add_newfile.png/add_newfile-full;init:.png
http://sqlsync.googlepages.com/add_newfile.png/add_newfile-full;init:.png

8

Script Configuration: Setting run time rules

No matter how you add a new script to your project file, you will need to configure your run time rules

for that script. There are 10 different attributes you can add to a script that effect it's description and

runtime.

 Script Name - basically, what it will be called! (Only available if you add via the New Sql Script

(Text) option)

 Target DB - what database this script will be run on when the package is executed

 Build Sequence - determines what order, in relation to the other scripts in the package, this

script should be executed.

 Script Timeout - Set the time (in seconds) of how long Sql Build Manager should allow the script

to run before terminating it and considering it failed.

 Tag - a short descriptive name used to group scripts (does not affect run order)

 Description - an optional long description of what the script is and what it's for.

 Roll back entire build on failure - A key feature to the tool. This tells the tool to roll back all of

the changes should this one script fail to execute properly.

 Roll back full script file contents on partial failure - should you uncheck the above; you then

have the granular option of how to handle a failure. If this script contains more than one

command, you can tell the tool to roll back all of the commands or ignore the failure and keep

on going.

 Strip Transaction References - many times, scripts generated by other tools will contain

transaction commands. By selecting this, you tell Sql Build Manager to take those out and be the

sole handler of transactions *it is recommended that you leave this checked for table schema

and data update scripts!

 Allow Multiple Committed Runs on same server - because Sql Build Manager records a log of

committed package runs, it can tell when a script has already been run on a server. It the script

is constructed to allow running again (a Stored Procedure update script for instance), you can

check this option to have it execute again.

http://sqlsync.googlepages.com/addingscripts

9

Configuration widow for "Add File" and "Bulk Add" options

Configuration window for the "New Sql Script (Text)" option and whenever editing an existing script.

When editing an existing file, these configuration options are hidden in the new window. To display

them, use the double arrow icon on the right side of the window.

Bulk Adding Scripts
There are 3 ways to bulk add scripts into your Sql Build Project file, all accessed via the List menu item:

Bulk Add

This menu option opens a standard windows "File Open" dialog box. From here, you can select multiple

script files to add by holding the <Shift> or <Ctrl> buttons as you click them. Clicking "OK" will then

present you with the script configuration screen.

10

Bulk Add From List

This menu option opens a dialog box where you can type or paste in a list of files (with full paths) that

you want to add to the project file. Simply add them, one per line, and click the "Add Files" button

Next, you will see a confirmation screen. This step is added in case you are trying to add a script that has

the same name as a script already in the project file. If you do, that item will be shaded and with the

radio button options, you can choose to add a new entry or re-use the existing one (in either case, the

script that is already there will be overwritten). You can also choose to "Cancel", or uncheck those files if

you have added them in error. If you click "Add Checked Files" you will be presented with the script

configuration screen

Bulk Add From Text File

Very similar to the Bulk Add From List option. Instead of typing or pasting in a list of files in the screen,

this option will pull the list from a text file for you. Just format the file with one file name per line. You

will get the same confirmation screen as above with the same options, and then be presented with

the script configuration screen

http://sqlsync.googlepages.com/add_bulklist.png/add_bulklist-full;init:.png
http://sqlsync.googlepages.com/add_bulklist_confirm.png/add_bulklist_confirm-full;init:.png
http://sqlsync.googlepages.com/add_bulklist.png/add_bulklist-full;init:.png
http://sqlsync.googlepages.com/add_bulklist_confirm.png/add_bulklist_confirm-full;init:.png

11

Changing SQL Server Connection
When you started the application, you needed to connect to an instance of SQL Server. You can change

your active connection after the tool has started as well. There are 2 ways to accomplish this:

Change SQL Server Menu Option

The first is from the Action menu 'Change Sql Server Connection" menu option. This will display the

same connection window you saw when the application started. It will again enumerate the SQL Servers

that are broadcasting on your network, but you can also type in the server name if you'd prefer or if

your server isn't broadcasting or select from you registered servers list.

 Recent Servers list

Another option is the "quick change" selection in the "Recent Servers" dropdown. This list is populated

with the last 10 servers that you have connected to and by simply changing your current selection; you

will change the target server. In both this case and the Action menu option, the new server name will

display in the header section.

http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png
http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png
http://sqlsync.googlepages.com/connection_change.png/connection_change-full;init:.png
http://sqlsync.googlepages.com/connection_recentServers.png/connection_recentServers-full;init:.png

12

Running Your SQL Builds

Run Time Build Settings
At run time, there are several settings you can use to change how the build file is executed against the

server.

Build Type

There are essential 3 different ways to run the project against the server: Trial, Full/Commit and

Partial

Trial

In trial mode, the build project will be executed, but when complete, it will roll back the entire

project. This allows you to test against a server in advance to make sure that all of your scripts

will execute properly. The settings that will run a trial are: Trial and Trial - Partial.

Full/Commit

This is the setting to use when you want the package to commit its changes to the server upon

successful completion. (Of course, if any script fails, the tool will automatically roll back the

changes - after all, that is the point of the tool :-). The settings that will perform the commit

are: Development Integration, Quality Assurance, User

Acceptance, Staging, Production, Partial and Other. The only difference is actually just the label

that gets applied to the log that you can use as per your processed.

Partial

This setting, generally the least commonly used, works in conjunction with the "Partial Run Start

Index" text box. This allows you to specify a starting mid-point,but run index, of the scripts to

run. The settings for this are: Trial - Partial (will roll back upon completion) and Partial (will

commit upon completion)

Target Database Override

There may be times during your development cycle, where you will want to temporarily change

the target database for a script (for instance if your development environment has various

versions of the database with different names (AdventureWorks vs AdventureWorks _Copy for

instance). This drop down, when set, will use the override value for the build execution.

Whenever the tool encounters a script that is configured for a default target that has an

override set, it will use the override instead.

13

Description

Before you start a build execution, you will need to enter a description. This is used as a brief

explanation of why you are updating the database and is kept in the log. Once some text is

entered, build link becomes active, as "Start Build on "(server name")

Executing your build project
Now that you've added your scripts, configured them how do you actually execute your scripts? You're

only a few quick steps away...

Executing the full project

Confirming target SQL Server

Before you kick off your scripts, check to make sure you're running them where you want. You can verify

the server you're currently connected to via the header section; both next to the Server label as well as

in the Recent Servers dropdown box (this drop down is a quick way to switch your connection to

another server)

Set Run Parameters

Set your run parameters accordingly (see here for full details), including the build type, the target

database overrides (if applicable) and a build description (this becomes part of the log). Once these are

set, the disabled "Please Enter a Description" link will change to "Start Build {Server Name}" and become

active. Click this and your off and running!

http://sqlsync.googlepages.com/buildloginformation

14

Advanced Runtime Settings: Log Target Database and Run Build without a Transaction

By default the Advanced Runtime Settings section is hidden. This is because generally, you don’t want o

use them. However, if you need to, they are there.

Log Target Database: By default, Sql Build Manager logs the execution to a SqlBuild_Logging table in

the target database. However, if you need it to log to a different database for some reason, use this

drop down selector to pick that database (note: it needs to on the same server instance). This does limit

the tool’s ability to determine the script’s run status.

Run Build without a Transaction: One of the key features of Sql Build Manager is that it runs the build in

a single transaction and if there is any failure all of the scripts are rolled-back, leaving the database in a

pristine state. You can turn off this protection with this checkbox. User beware however, because now

you’re just running scripts individually and if there is a failure, all scripts that run before it are still

committed.

Running / Seeing the progress

Once you click the link to start the build, several things happen:

 The current status in the bottom status panel changes to "Proceeding with Build"

 The Build Results list is populated as the scripts are run, verifying the run order, the target

database it was executed against and its status.

 A "Cancel" button becomes visible. Clicking this will, of course, cancel the build execution and

roll back any changes made

15

Once the build completes, either successfully or with an error, the final status of the build is shown in

the status panel. The example below shows a script failure, which highlights in red and the status as

"Build Failed and Rolled Back". To determine the failure, or see the results of any script that ran, you can

right-click on that item in the Build Results list and select "Display Results". The pop-up window will

display the SQL Server message and any errors.

Executing select scripts

If you don't want or need to execute the full build project from start to finish, you don't have to. From

the build scripts list, you can select one or more scripts and Right-Click to display the menu. Two options

are "Try Script against Database (Rollback)" and "Run Script against Database (Commit)". These do

exactly what you'd expect them to do. Note that they will use any Override Target setting you may have

set in the "Build Manager" section.

16

Just like a full build, you will get the status update in the "Build Results" section and the final status in

the status bar.

Build Log Information
Sql Build Manager keeps both an internal (resident in the project file) and external (resident in a logging

table on the target database) logs of build runs. Their contents and uses differ significantly. .

Build History

The internal logging is called "Build History". This records the information about a build run:

 Start and end time

 Server run against

 Description entered by the user

 Build type

 Final status (committed, rolled back)

 User id of the person that executed the run

In addition, it captures details about each script that was run. The three most useful data points

collected are:

http://sqlsync.googlepages.com/history-main.jpg/history-main-full.jpg
http://sqlsync.googlepages.com/history-main.jpg/history-main-full.jpg

17

 Results - the text response from SQL Server from the execution of the script. This is especially

useful when there is an error in the script to help you pin-point it. To view the results in a bigger

window, select the script line and right-click to

 Success - an indicator as to whether or not the script ran successfully

 File Hash - a SHA1 hash of the script run. This can be used to detect file changes.

Saving build history to external file.

If you need to save off the build history for a build or a series of builds, you can do that too. While you

are in the build history window above, simply select one or more rows and right-click. Then simply select

the menu option "Save Build Details for Selected Rows". You will be presented with a Save File dialog

so you can save off the detail. This detail is saved in an XML format so you can read it and also easily

parse it if you need to.

Note: unlike the "Archive Build History" menu option on the main screen's "Logging" menu, this option

does not remove the build history that is stored in the Sql Build Manager project file - instead it saves off

a copy.

Database Logging

Sql Build Manager logs all committed transactions to a table in the target database called

SqlBuild_Logging. This allows the application to set the appropriate indicator icon in the script list and

also allows the application to be able to reconstruct a build project file from database records (via the

Tools  Rebuild Previously Committed Build File menu option). This log is much more detailed that

the build history and includes:

 Script Name

 Script ID (unique identifier for the script)

 Script File Hash - a means to detect changes between runs

 Commit Date

 Script Text - allows for rebuilding of the script if needed

 Plus more...

Build File SQL Logging

A final option for logging is the creation of a SQL log - a file that contains all of the scripts included in a

build, in the order that they were run (including use statements for their target database) as well as

comments noting the source of the script. This log is formatted such that it is a fully executable SQL

script and can be run independently from any SQL query window.

By default, this is turned off, but it can be set via the "Action Setting  Create SQL log of Build

Runs". These logs can be retrieved via "s" menu.

18

Caution! Having this set all the time can cause your build file to bloat quickly and unfortunately can slow

the general processing of the file. However, it can be useful is used judiciously.

Validating a Build Package
Often, you will need to “turn-over” your build package to another group for implementation. In doing

so, you want to make sure that the package you turned over doesn’t get changed or mixed up with

another one. Since the SBM file changes after each execution (the history is saved), the file hash of the

SBM file is an unreliable signature. To solve this problem, you can use a hash calculated off the scripts

themselves. You do this by loading up your build package, then selecting Tools  Calculate Script

Package Hash Signature menu option.

This will open up the Hash Signature window with the calculated SHA1 hash of all the script files

together. You can use the Copy button to grab the hash value for publishing. The hash value will not

change unless there is a change (no matter how minor) to the scripts.



Basic Command Line Execution

Command Line Arguments
Sql Build Manager can be run directly via command line or through the SqlBuildManager.Console.exe

helper application. The advantage of using the "console" application is that you will be able to record

exit code values as well as stream the standard output and error text into any automation or scheduling

software that you may be using.

In either case, the command line arguments are the same:

 /build="<.sbm file name>"

Lets the tool know that you want to run a Sql Build using the specified .sbm file. This is not used

alone, but in conjunction with a "/server" and/or a "/override" argument.

19

 /server=<server name>

Designates the target server to run the .sbm file against. Used in conjunction with "/build"

 /override="<.multiDb file name>"

Sets the pre-configured multi database/server configuration to be used along with the .sbm file

for the build run.

 /override=<default database>,<Override database>

Defines a one-time database override setting where the override database is used where ever

the default database is found in the .sbm file configutation. A "/server" and "/build" argument

set are also needed.

 /auto="<.sqlauto file name>"

Used independently of the above, this is used to script the database(s) defined in the Sql Auto-

scripting file.

 /test="<.sptest file name>"

Sets the Stored Procedure test configuration to execute. Used in conjunction with "/server",

"/database" and "/log" arguments.

 /database=<database name>

Sets the database to execute a stored procedure test configuration against.

 /scriptlogfile="<script log file>"

Allows you to set a destination, outside of the Sql Build Project, where the SQL script log will be

saved. This can be useful if you need to store that information in a particular location for

auditing.

NOTE: There are special command line arguments specific just for threaded multi-database execution

Auto-Creation of Command Line Statements
To simplify the creation of a command line execution, the application offers a user interface to create a

command-line for you. You can then either copy this statement to be used later, or use an execute

button to kick it off then and there.

Configuring the command statement

1. From either the Tools  Construct Command line string menu item of the main form or the

Action  Construct Command line string menu item from the Multi Database Run

Configuration form you can open the creation window.

http://sqlsync.googlepages.com/multi-databaseserverexecutions

20

2. The Command Line Builder form will give you options for each setting.

21

 Run Settings – How do you want the execution to run

o Run multi-database as threaded – sets whether or not you want the tool to

thread out the execution. This is checked by default since this is the biggest

benefit of running via command line

o Run as Trial (rollback) mode – sets whether or not you want database

changes to commit when completed. If checked, all scripts will be rolled

back and leave the target database unchanged

o Run builds without transactions – allows you to run the scripts without

transactional protection. WARNING! Using this setting will mean that if a

script fails, all previous scripts will still be committed and your databases

will be left in an inconsistent state

o Description – the description of your build. Any comments you want to add

regarding this execution.

o Allowed Timeout Retry Count – Sets how many times the build can be

retried is the SQL Server error message is “Timeout expired”

 Threaded Run Logging – when running in a threaded mode, how do you want to

create the log files

22

o Log File Format – HTML or Plain Text. Obvious. The HTML format allows you

to link from the base log files (commits.html or errors.html) to easily locate

the specific database run logs

o Root Logging Path - the base folder that you want the log files and sub-

directories to be created

 Script Source – where are the scripts that you want to run? You can only populate

one of these options as a time.

o Sql Build Manager Package (.sbm) – command lines can only be run from

.sbm compiled files, vs .sbx files. This will be the location of the .sbm file you

want to use. NOTE: this will be auto-populated with the path of the .sbm file

that is loaded in the main form if applicable.

o Script Source Directory – if you want to run un-configured scripts that reside

in a folder, you can point this to that directory path. By doing this, you lose

the advantages of configuring run-time settings for scripts.

 Override Target Settings

o Target Override Settings (.multiDb, .multiQbQ or .cfg) – the location of the

config file that lists the servers/databases that you want the multi-database

run to execute against.

 Database Authentication Settings

o Use Windows Authentication – when checked, the connection to the

databases will use the windows account being used to run the execution as

the authentication to the databases

o UserName – enabled if Use Windows Authentication is unchecked. The SQL

Server user to use for the connection.

o Password – enabled if Use Windows Authentication us unchecked. The SQL

Server user’s password to use for the connection.

 Alternate Logging Database - if you select alternate database logging (generally

NOT recommended as it reduces the effectiveness of the logging) this is the name of

that database.

Generating the Command statement

Once you have applied all of your settings in the form, you can click “Construct Command Line”. The

form will validate that you have populated all necessary settings and configured your options properly. It

will not validate that file paths are correct and files exist (this is because you may want to set up a

command line not relative to where you are setting it up). The generated command line string will be

populated into the box below the button. Also, the “Execute” button will become enabled.

23

Command Line Execution via UI

After successfully generating a command line string and the “Execute” button is enabled, you can click

it! This will create a command window to run the string via an external process. You may see a blank

command window pop open and remain open until the execution is complete. When that window

closes, the execution output window will display that output of the execution (hopefully a success

message!). Also, the “Open Logging Folder” button will become enabled. This is a courtesy button to

open the logging folder directly from the application should you want to browse the log files.

Command Line Examples

Run standard unattended Sql build

Runs the specified .sbm build file on the designated server using the parameters and target databases

defined in the project. The command line execution uses Windows authentication of the executing

process to connect to the server and database(s). As with in interactive execution, the results are saved

in the .sbm file for review.

 SqlBuildManager.Console.exe /build=".sbm file name"

/server=myserver

Example: SqlBuildManager.Console.exe /build="ProjectUpdate.sbm" /server=ProdServer

Run an unattended Sql build with manual database override settings

Runs the specified .sbm build file on the designated server using the override database settings defined

in the command line arguments. This is the same as using the Target Database Override setting in the UI

(see Build Run Settings for details). The command line execution uses Windows authentication of the

http://sqlsync.googlepages.com/buildrunsettings

24

executing process to connect to the server and database(s). As with in interactive execution, the results

are saved in the .sbm file for review.

 SqlBuildManager.Console.exe /build=".sbm file name"

/server=server /override=default,override

Example: SqlBuildManager.Console.exe /build="ProjectUpdate.sbm" /server=ProdServer

/override=Main,Copy1

Note that multiple overrides may be set if the build file contains more than one default database setting

via a semi-colon delimited list:/override:Main,Copy1;Template,Template2>

Run an unattended Sql build with saved Multi Db configuration

Runs the specified .sbm build file using a pre-configured multiple server/database configuration. The

command line execution uses Windows authentication of the executing process to connect to the server

and database(s). As with in interactive execution, the results are saved in the .sbm file for review.

 SqlBuildManager.Console.exe /build ".sbm file name" /override

".multiDb File Name"

Example:

SqlBuildManager.Console.exe /build="ProjectUpdate.sbm" /override="prod release.multiDb"

Script databases using an Auto Script configuration

Uses Sql Build Manager's database scripting feature to script the designated server/database objects to

a target folder.

 SqlBuildManager.Console.exe /auto=".sqlauto script cfg file"

Example: SqlBuildManager.Console.exe /auto "script dev databases.sqlauto"

Running a Stored Procedure Test configuration set

Utilizes Sql Build Manager's ability to perform unit tests against stored procedures and saves the results

in a parseable XML data format.

 SqlBuildManager.Console.exe /test=".sptest file"

/server=myserver /database=myDb /log=logfile.xml

Example: SqlBuildManager.Console.exe /test="testing.sptest" /server=Production /database=myDb

/log="C:\logfile.xml"

Opening an interactive Build Manager Session

Opens the selected .sbm build project file in a user window

 " Sql Build Manager.exe" ".sbm file name"

See Advanced Command Line Execution for return codes.

http://sqlsync.googlepages.com/storedproceduretesting

25

Targeting Multiple Servers and Databases
NOTE: For more advanced multiple target database deployment, also see Remote Service Execution and

Deployment

Configuring Multiple Database Targets
To execute commands across multiple databases at once, you will need to configure which databases

you want to target. There are multiple ways to configure these targets and the default sequence of

execution. For each however, you open up the “Multiple Database Run Configuration” window via the

Sql Build Manager window, Action  Configure Multi Server/Database Run menu option

The default window opened when opening the Multiple Database Run Configuration window will have a

single main tab for the server that your main window is connected to. It will have a sub-tab for each

database that you have configured in the open Sql Build File (.sbm or .sbx) that you have open.

Configurations can be saved via the Action Save Configuration menu of the Multiple Database Run

Configuration window. These are saved as .multiDb files

Pre-defined configurations can be loaded from the Action  Load Configuration menu of the Multiple

Database Run Configuration window or via the Recent Files menu if available.

Manual Sequence Assignment

1. Manual assignment consists of typing in the sequence of execution for target databases in the

boxes provided. These will be the database names that are used for the override target of the

sub-tab named database if you are configuring a multi-database build or will define the target

databases for a report generation.

26

2. If you need to add additional server targets, you can use the Action  Add Another Server

Configuration menu option and use the connection window to add that server and its database

list to the top level tabs. You would then configure the target database for this server also by

manually typing in the sequence number.

3. To remove a server configuration that you don’t need, make sure that its tab is selected, then

click the Remove button on that configuration

Auto sequence like-named databases

To aid in the assignment of database targets, you can auto fill the sequence textbox for databases that

have similar names.

1. In the server configuration tab, right-click on a database name to display the context menu and

select the Auto Sequence Target Databases option

27

2. The auto sequence pop-up window will display. In this window, highlight the portion of the

database name that is common to all those that you want to sequence. You can also set the

starting sequence number and the increment for sequencing in this box. Once you have this

configured, click the OK button and all of the databases that match the common pattern in their

name will be sequenced accordingly.

Create Configuration via a Query

If your target database list is available via a SQL query, you can use that query to generate a multi-

database configuration file at run time.

1. From the Multiple Database Run Configuration window select the Load Configuration via

Query.

2. In this window, you can type in the query that you will use to retrieve your database list. The

query must return 3 columns worth of data in order (the column names are unimportant):

Server Name: The server that the target database can be found on. This is needed even if the

28

target database is on the same server as the default database.

Default DB Name: the default database that is configured in the “Database Name” column

of the Build Scripts window.

Override DB Name: This is the name of the target database that you actually want to

execute against

3. If you want to add additional data from this source that will appear in an Adhoc query, you can

put in additional columns after the <<override Db Name>> entry and these values will carry over

into the Adhoc query results

4. You can also load an existing query setting (.multiDbQ file) via the Action  Open Saved Query

Configuration or Recent Files menu options.

5. You can change the source database (the database this configuration query will be executed

against) via the dropdown list.

6. You can change the source server (the server where the source database resides) via the Action

 Change Sql Server Connection menu option.

7. Click “Create Configuration” button to generate the configuration file. You will then be

prompted to save the query as a .multiDbQ file (optional). The query window will close and the

newly generated configuration setting will be loaded in the Multiple Database Run

Configuration window.

Threaded Multi-Server Database Execution
Do you need a fast, multi-threaded execution of your scripts across a large number of databases? The

threaded option is right for you. With a few command line settings, you can set up your Sql Build

Manager project to get executed across hundreds, even thousands of databases in a parallel threaded

fashion.

NOTE: While this type of execution still manages transactions per each SBM file execution, it does not

manage all of the transactions together like when run in a serial mode. If the scripts run on one

database are successful, they will be committed, even though the scripts for another database may fail

and be rolled back.

Set-up

There are two options for configuring your multi-database execution. If you know all of you target

databases ahead of time and want to set them up manually, you can go through the UI to create the

configuration. If you need another tool to create the list or want to construct a configuration manually,

you can use a simplified, delimited version of the configuration, one setting per line:

<server>:<default database>,<target database;<default2>,<override2>

 The first argument is the server name, followed by a colon (:).

29

 Next it the first default database, override database configuration setting, using a comma (,) as

the delimiter. (Remember, the default database is the database set in the SBM for the script.

The override database is the actual database you want to execute against at run time.

 If you have additional default databases set in the SBM file, you will need another override

setting. Separate these pairs by a semi-colon (;).

For each database you want to execute against, add an additional line in the configuration file (i.e. each

line equates to an additional thread). Finally, save the file with a .cfg extension

See Advanced Command Line Execution for the command line syntax to execute your threaded builds.

Remote Service Execution and Deployment
While the tool has the feature for Targeting Multiple Servers and Databases, you can take that multi-

target, multi-threaded execution one step further and distribute that load across multiple “Execution

Servers” as well. It builds on the multiple server functionality and extends it to send build requests via a

remote service call to remote computers that will handle the actual processing of the SQL scripts. You

can spit the load amongst all of your execution servers for maximum efficiency and minimum

deployment time.

Overview
To access the Remote Execution Service form, click the Action  Remote Execution Service menu

item. (If this menu item is not enabled, you will need to have your user id configured by your

administrator to get access)

The remote execution form has 4 sections:

30

 Remote Servers – this is for the list of remote execution servers that you will be using.

You can either type into the list or use the Action  Manager Server Sets menu option

to set up and load pre-configured server groups. NOTE: an execution server is not

necessarily a SQL Server machine. It can be any computer or server that has the remote

execution service loaded and has connectivity to all of your target SQL servers.

 Execution Settings – this is the same as the execution settings group found on Command

Line Builder form. This will configure which SBM package you will use, the logging path,

execution parameters and the multi-database configuration that will be used.

 Workload Distribution – sets how you would like to distribute the workload across your

execution servers. The default value is “Equally Distribute…” which will do just that.

 Remote Service Status Dashboard – gives you a view of the status of the Sql Build

Manager Build Service on each of the execution servers.

Section Detail

Remote Servers

This list of remote servers that will serve as the execution engine for your deployment can be populated

in 2 ways. First, you can type in the machine name of the servers directly into the grid. However, if you

31

plan on re-using server sets, you are better of creating Server Sets via the Action  Manager Server

Sets, menu item which will display the Remote Execution Server Configuration window.

The first step in creating a reusable configuration is to use the Action  New Configuration menu. You

will be prompted for a Server Group name, pick one that makes sense for the group of execution servers

that you will be first setting up and click “OK”. This name will show up in the left side “Server Group”

section. Click on the name to activate the right hand side setting section.

In the “Server Group Description” section, give yourself a meaningful name – for instance “Development

Area execution servers”. Next, add the servers to the Remote Execution Server grid by typing in the

bottom text box of the grid. Once you have finished that group, you can add another Server Group (a

“Production” group for instance) and add the servers for that set or you can use the Action  Save

menu item to save the configuration file. NOTE: the next time you open this page, it will automatically

load the last configuration you used.

Once you have your groups configured, to use one of them, select it’s name in the Server Group list and

click the “Use Selected Group” button. This will close the form and add the server names to the Remote

Execution Server grid on the parent page.

Execution Settings

For a description of the common settings between this form and the Command Line Builder form, see

that section. There are a couple of important differences:

 Root logging path – this path must be present and accessible on each execution server. It is best

to use a local folder path on the execution server (vs. a network share) to maximize

performance and reliability of the logging and execution.

 Override Target Settings / Configuration links - the 2 links “Open Multi-Db config form” and

“Create configuration via query” allow you to create and/or preview the multi-database

deployment configuration. Just like the command line, this can be done via a pre-configured file

32

(.multiDb – which is an XML formatted configuration file or .cfg which is a plain text delimited

file) or via a .multiDbQ – which is a formatted database query that can dynamically construct the

configuration for you. These links will open the appropriate configuration page. By saving the

new configuration file and closing out the form, the configuration file name will populate in the

Override Target Settings text box.

 Derive Remote Execution Server list from Override Target Settings – this is an option you can use

if your target database servers also act as your remote execution servers. By checking this box,

you direct the tool to derive the list of unique server names from the Override Target Settings

file or query and then use this list as the Remote Execution Servers list. NOTE: checking this box

will automatically change the Workload Distribution to Each execution server handles only its

local load (matches host names). You can change the selection if you’d prefer however.

Workload Distribution

To take advantage of the multiple execution servers, you need to distribute the load to each of them,

further distributing the processing of the SQL scripts. This can be managed in 2 ways:

 Equally distribute load across execution servers – simple enough. It will take the load, split it as

equally as possible across all of the servers. The split is done by chunking out into approximately

equal parts.

 Each execution server handles only its local load (matches host names) – this option should only

be used if you double task your server not only as a SQL Server host, but also a remote

execution host. This will tell the distributor to do a match between the execution server name

and the server name of the target database. It will only task the execution server with positive

matches.

Because work is being distributed and/or matched to execution servers, there is the potential that the

workload could be unbalanced and/or database could be missed altogether. To give the user insight into

33

this, once a SBM build file and Override Target Setting values have been provided, the “Preview

Distribution” button becomes enabled. This will have the tool do a dry run at splitting up the workload

and display for you how it will be managed as well as any databases that will be skipped and execution

servers that would be un-tasked.

Remote Service Status Dashboard

This report the status of the execution servers you have configured in the Remote Servers section. It is

populated by clicking the “Check Service Status” button.

The 6 status columns are:

 Server Name – you guessed it, the name of the execution server.

 Service Readiness – tells you the status of the service on that machine. The possible values are:

o ReadyToAccept – the service is at your beckon call and ready to go.

o PackageAccepted – you have submitted a package and it is undergoing setup.

o PackageValidationError - there is something wrong with the package and it could not be

processed

o Processing – hmm. Yes, it’s doing your work for you

o Error – something bad has happened.

o Unknown – the service isn’t properly reporting a status.

o Unreachable – the service can’t be contacted – is the service running?

o ProcessingCompleted – the job is done and the processor is completing it’s clean-up

 Last Status Check – the last time the client attempted to contact the service for a status update

34

 Last Execution Result – since the remote service has been started, what was the result of the

last execution. If nothing has been run since the service start, it will report “Waiting”. Otherwise

you will most often see:

o Successful – self explanatory

o FinishingWithErrors – the processing completed, some databases were probably

updated, but some have experienced a problem. You can check which ones via the

service status context menu.

 Service Version – just to make sure you’re services are all in sync, this is the program version of

each execution service.

 Tcp Service Endpoint – the Sql Build manager talks to the remote execution servers via a TCP

connection. This tells you what the URL and communication port are for the service. This is used

mostly for troubleshooting.

Service Status Context Menu

To view the details of the last execution, you can right click on a cell in the Remote Service Status

Dashboard to pull up the context menu. In this menu you have five options:

 View Last Execution “Errors” log – this will display the error log from the selected row’s target

server. This log displays the list of servers for which execution was not successful.

 View Last Execution “Commits” log – this will display the commits log from the selected row’s

execution server. This log displays the list of servers for which execution was successful.

 Paste Server/Database value below to retrieve detailed log for last run – this is a very long

winded label, but you get the idea. You can take the target database/server from the errors or

commits log (pixilated above for your protection), paste it in here and the execution service will

send back the detailed execution log specifically for that database. In that log, you should see

exactly what happened with the run.

 View Remote Service Executable Log file – the remote service agent keeps a running log of

errors and warnings that may be useful to determine what caused an issue with an execution –

35

especially if the error is not SQL related. This menu item will pull the contents of that log file into

a display window for you, so you don’t need to login to that machine directly

 View Build Request History for this Remote Service – as of version 8.5.8, the agents will keep a

history of accepted build requests. This menu item will display information about these

requests. From this new window, you will also be able to use the context menu to pull back the

log files for each specific execution.

Pre-testing database connectivity
Once you have added or loaded your list of Remote Execution Servers and also set your Override Target

Settings value, the application has enough information to be able to pre-test the remote execution

server’s agent ability to connect to its designated database targets. This pre-test is not required, but

may highlight connectivity issues prior to you actually executing a full build.

To execute the test, just click the “Test Connections” button and the application will instruct the remote

execution servers to make a connection (don’t worry, no scripts will be run). If all connections as

successful, you will get a simple pop-up message confirming this. If there are connection issues, you will

get a pop-up listing the remote execution server name, the SQL Server name and the database name

where the connection could not be made.

Performing a remote execution
Below is a step-by-step how-to for running a remote execution and deployment. For details about each

section and its function see above in the Remote Execution and Deployment overview and section detail

1. Open the Remote Execution Service From

2. Type in or load list or Remote Execution Servers that you will be tasking with your deployment.

3. Click the “Check Service Status” button. This will have the Sql Build Manager call out to the

specified servers and see if they’re ready to go.

4. Type in your Root Logging Path – remembering that this is going to be a local path that will

reside on each execution server. You can use System Environment variables in the path to make

is more customizable.

5. Type in a Build Description – a “serial number” or description of why you’re performing the build

36

6. Select a Script Source – your SMB build package. You can either type in the path or use the

“Open” button to navigate to it.

7. Select an Override Target Settings value – your pre-defined .multiDb, .multiDbQ or .cfg file. You

can also create a new one with either the “Open Multi-Db config form” or “Create configuration

via query” link buttons.

8. Optionally, you can change your authentication settings and the Alternate Logging Database

values.

9. Next, select your workload distribution so tell the tool how you want to spread the work across

your servers.

10. Optionally, but a good idea, click the “Preview Distribution” button. This will display the

“Calculated Execution Distribution” form so you can ensure that all servers and databases will

be tasked and updated.

11. Finally, click the “Submit Build Request” button. This will send the distributed load to the

execution servers for work. While processing is going, Sql Build Manager will automatically

query each of the execution servers 2 times a second to update the Service Readiness and Last

Execution Result values.

12. Once all services report back a status of “ReadyToAccept”, the auto polling will stop.

13. If any of the execution servers reports a “FinishingWithErrors”, you should check the results via

the “View Execution ‘Errors’ Log” and the detailed log results to see how you can mediate and

correct the problems.

For a command line execution across multiple servers, see the Advanced Command Line Execution

section below.

Advanced Command Line Execution

Execution Flags
To run your multithreaded build or remote server execution, you need to use the

SqlBuildManager.Console.exe utility with the command line options:

 /threaded=true This is the key flag to alert the utility that you will be executing this SBM file

in a multi-threaded mode. This flag is used exclusively for the threaded mode.

 /build="<.sbm file name>"

Lets the tool know that you want to run a Sql Build using the specified .sbm file. This is not used

alone, but in conjunction with a /server and/or a /override argument.

 /ScriptSrcDir="<directory path>"

Alternatively, if you want to run your scripts from a directory instead of a pre-constructed SBM

file, you can use this option. Set the value to the directory where your scripts are located. The

engine will look for all files with a .sql extension and sort them by file name. They will be

configured to leave transactions with full rollback on failure. If this and a /build tag are found,

37

this will be used. Also, since the files will be added without a default database setting, the

engine will use the first override database setting per line in the config file

 /override="<.multiDb file name>" or /override="<.cfg file name>"

Sets the pre-configured multi database/server configuration or the text delimited configuration

to be used along with the .sbm file for the build run.

 /RootLoggingPath="<directory name>" Sets the root directory under which all of the log

files and folders will be placed. This flag is used exclusively for the threaded mode. Note that

you may use environment variables in this path to make value more dynamic per system.

 /trial=<true or false> By default, the threaded execution will commit the changes to the

target databases. If you want to experiment with the run to check how it will go, you can set the

trial tag to true. This will work the same as the trial mode in the UI and roll back the changes in

each database, even upon successful completion. To keep things more simple, the successful

runs are still added to the Commits log file but are recorded as "Build Successful. Trial Rolled-

back"

 /LogAsText=<true or false>. Be default, the value is false, which will create the Commits

and Errors log files in HTML. The advantage of this is that it will hyperlink you to the appropriate

folder for viewing error or execution log details. If you set the value to true, the same

information will be written, just in plain text.

 /username="<user name>" The user name for a SQL Server user account that you want to

execute under. If this tag is present, then a /password tag is also required. If these tags are not

present, the tool will use Windows authentication when connecting to the database.

 /password="<password>" The password for the SQL Server user account that you want to

execute under. If this tag is present, then a /username tag is also required. If these tags are not

present, the tool will use Windows authentication when connecting to the database.

 /LogToDatabaseName="<alternate database>" Allows you to write the commit logs to

the SqlBuild_Logging table on a different database than the target databases. This should be

used sparingly as it will not give you the proper script status when opened in the user interface

 /description="<run description>" Allows you to add a custom description to the run.

This will be used in the same fashion as a description added during a serial/manual run. This will

also be used as the token replacement for any dynamic scripts you have. The token for this

value is #BuildDescription#

 /Transactional=<true or false> Allows you to run the scripts without transactional

protection. WARNING! Using this setting will mean that if a script fails, all previous scripts will

still be committed and your databases will be left in an inconsistent state

38

 /TimeoutRetryCount=<positive integer number value> Sets the ability to have the

package be automatically re-run “x” number of times if the SQL Server exception encountered is

“Timeout expired”. This is not valid in combination of /Transactional=false

The following keys are used exclusively for Remote Server Execution. See this section above for the UI

version and explanation of this functionality. Unless noted, the above Execution Flags can also be used

to configure the run. For ease of use and to help you create a properly formed command-line string,

there is now a “Create Command Line” button available – but be aware that while this does create a

well formed string it does NOT validate the values or files and therefore does not guarantee execution

success.

 /remote=true This is the key flag to alert the utility that you will be distributing execution to

remote execution servers. This key should not be combined with the /threaded flag.

 /RemoteServers=”<remote server file>” This defines the file to use that defines the

remote execution servers that will be used for this run. This file should be a simple text file that

contains one machine name per line.

 /RemoteServers=”derive” This is an advanced setting that you can use if your target

database servers also act as your remote execution servers. This instructs the tool to derive the

unique server names from the /override settings and use that list as the remote server list.

 /DistributionType=equal or /DistributionType=local Defines how the load for the

execution will be split across the execution servers. For details, see the Workload Distribution

section.

Logging
Since there isn't a user interface for this type of execution, logging is obviously important. For general

logging, the SqlBuildManager.Console.exe has its own local messages. This log file is named

SqlBuildManager.Console.log and can be found in the same folder as the executable. This file will

be the first place to check for general execution errors or problems.

To accommodate the logging of the actual build, all of the output is saved to files and folders under the

path specified in the /RootLoggingPath flag. For a simple threaded execution, this is a single root

folder. For a remote server execution, this folder is created for each execution server.

Working folder

This folder is where the contents of the .SBM file are extracted. This file is extracted only once

and loaded into memory for the duration of the run to efficiently use memory.

39

Commits.html (or .log for text scripting)

Contains a list of all databases that the build was committed on. This is a quick reference for

each location that had a successful execution.

Errors.log (or .log for text scripting)

Contains a list of all databases that the build failed on and was rolled back. This is a quick

reference for all locations that had failures.

Server/Database folders

For each server/database combination that was executed, a folder structure is created for each

server and a subfolder in those for each database. Inside each database level folder will be three

files:

 LogFile-<date,time>.log: This is the script execution log for the database. It

contains the actual SQL scripts that were executed as well as the return results of the

execution. This file is formatted as a SQL script itself and can be used manually if need-

be.

 SqlSyncBuildHistory.xml: the XML file showing run time meta-data details on

each script file as executed including run time, file hash, run order and results.

 SqlSyncBuildProject.xml: the XML file showing the design time meta-data on each

script file that defined the run settings, script creation user ID's and the committed

script record and hash for each.

Command Line Return Codes

Execution Result codes

These are the codes that may be returned by the SqlBuldManager.Console.exe file to the originating

command. Any non-zero result is an error.

 0 - Successful execution

 1 – The execution finished however there was an error on one or more target databases. You

should check the errors.log file for details.

 -99 - The /RootLoggingPath flag is missing. This is required for threaded and remote server

executions.

 -100 – The /override flag is missing

 -101 – The /build flag is missing. This is required to define the .SBM file that is to be executed.

 -102 – The /override flag has an incorrect value

 -103 – The .SBM file was invalid. The application was not able to load the .SBM file

40

 -104 – The MultiDb configuration file was invalid. The application was not able to load the

.MultiDb, .MultiDbQ or .cfg file

 -105 – A /ScriptSrc flag was found, but the specified path was not found.

 -106 – The .SBM file defined in the /build flag was not found

 -107 – An invalid /transactional and /trial flag combination was found. A run cannot be
/trial=true and /transactional=false

 -108 – Upon loading the multi-database configuration, a missing default value or target override

setting was found. This needs to be corrected for the scripts to run.

 -109 – Negative /TimeoutRetryCount value. This flag must be set to a positive integer balue

 -110 – An invalid /transactional and /TimeoutRetryCount flag combination was found.

A run cannot be set with /TimeoutRetryCount=(anything >0) and
/transactional=false

 -200 – The .SBM file scripts were not extracted properly.

 -201 - The .SBM file was not in the proper format. The data was not loaded

 -300 – Run initialization error. Unable to configure runtime data

 -301 – Build processing error. A particular execution thread encountered an error. Check the

errors.log file for details.

Remote server execution specific error codes

 -600 – Unable to create a Build Settings object from specified command line arguments

 -601 – One or more of the remote execution servers encountered an error in execution

 -700 – The /RemoteServers flag is missing

 -701 – The /RemoteServers flag is invalid. This must refer to an existing file.

 -702 – The /DistributionType flag is missing.

 -703 – The /DistributionType flag value is invalid.

 -750 – One or more of the specified remote execution servers did not return a “Ready to

Accept” status message

 -751 – Unable to connect to one or more of the specified remote execution servers.

 -752 – No remote execution servers were specified

Advanced Script Handling

Utility Scripts
To assist you in creating robust, re-runable scripts, Sql Build Manager comes with an array of “utility

scripts” that will allow you to insert commonly used, customized script snippets into your script file. For

instance, let’s say you need to write a script to add to a column to a table. What is the best way to write

that script? Sql Build Manager knows!

41

Utility Script Example

1. Right click on the Build Script list and select “Add New Sql Script (Text)” menu item (you can

also use the Ctrl+N hot key)

2. The “Add Sql Script Text” window will pop up. In this window, right click in the main script

window to pull up the utility script context menu. Since we’re adding a column, pick the

“Columns” menu, then the “Add Column” option.

3. The Utility Script Replacements window will display. Since we picked Add Column, the fields

required to define a new column. The scratch pad area is the contents of your clipboard. This

can be handy if you have some snippet you want easy access to. Next, fill in the column

definition for the required fields. As a short cut, you can highlight text in your scratchpad area

and press the function key associated with the textbox you want to fill.

42

4. Once you have filled in your definition, click the Submit button. This will close the Utility Scripts

Replacements window and insert the newly created script into the body of the Add SQL Script

Window. A couple of notable features are added. First, a default name was added to the script

name box. This name is dependent on the type of action you performed. Here for instance it

gives you a name describing the addition of a column. Also of note the script that was created is

“wrapped” in select against the database to see if the column already exists in the database.

This allows you to commit the script multiple times without worrying about getting an error that

the column already exists

Simple Text Inserts

Some of the utility options don’t do much other than insert simple, commonly used pieces of SQL.

43

 WITH NOCHECK ADD – (string literal) : this does just that, adds the text WITH NOCHECK ADD at

the location of your cursor. Handy when working with Foreign Keys.

 WITH (NOLOCK) – (string literal) : adds the text WITH (NOLOCK) at the location of your cursor.

Handy when working with scripts that have selects against tables that can afford the potential

for a “dirty read”

 Insert Comment Header: adds a comment header block to your script at the location of your

cursor. Great for ensuring consistency in your procedure and function definitions.

 Grant Database Permissions: Adds a rather large script to iterate through your target database

and grant permissions to all of your stored procedures and functions to a specified list of user

groups.

Token Replacements

A canned search and replace function.

 CREATE  ALTER: This will search all the text you have highlighted for the word CREATE (case

insensitive) and replace it with ALTER.

Script Creation

These utilities will help you create your scripts from scratch. You don’t need to know the syntax for any

of the scripts, just fill in the form and the scripts are created for you. The example above in Utility Script

Example is a sample of a script creation utility. The others are found in the sub-menu for their object

type. All of these scripts will contain the “IF EXISTS” or “IF NOT EXISTS” wrapping to ensure they are fully

re-runable.

44

 Columns

o Add Column: As above, generates a script to add a column to a table

o Alter Column: Creates a script to alter a column on a table

o Delete Column: Creates a script to delete a column from a table

o Rename Column: Creates a script to rename a column. This is a pretty complex one, very

useful if you are going to rename

 Foreign Keys

o Drop Single Foreign Key: Creates a script to drop a foreign key from a table

o Drop All Foreign Keys: Creates a script to drop all of the foreign keys associated with a

table. Another pretty complex script.

 Default Constraints

o Add Default Constraint: Creates a script to add a default value to an existing column in

an existing table.

o Drop Default Constraint: Creates a script to drop a default constraint on a column. Use

this when you know the name of the constraint already

o Drop Column Default Constraint: Creates a script to drop a default constraint on a

column when you don’t know the name of the constraint. This is useful when you had

created a constraint without specifying a name and let SQL server name it for you with a

random name.

 Triggers

o Drop Trigger: Drops a trigger from the database

o Disable Trigger: Creates a script to disable an existing trigger on a database table

o Enable Trigger: Creates a script to enable an existing trigger on a database table

 Tables

o Drop Table: Creates a script to drop a table.

 Indexes

o Add Index: Creates a script to add a standard index (non-unique, non-clustered) to a

table. Specify a comma delimited list of columns.

45

o Add Unique Index: Creates a script to add a unique index to a table. Specify a comma

delimited list of columns.

o Add Non-Clustered Index: Creates a script to add a non-clustered index to a table.

Specify a comma delimited list of columns.

o Drop Index: Creates a script to drop an existing index

 Stored Procedures

o Drop Stored Procedure: Creates a script to drop a stored procedure from the database.

o Grant Execute to Stored Procedure: Creates a script to grant the EXECUTE permission to

a specified user to stored procedure

o Revoke Execute to Stored Procedure: Creates a script to revoke the EXECUTE permission

to a specified user to stored procedure

 Functions

o Drop Function: Creates a script to drop a function from the database.

o Grant Execute to Function: Creates a script to grant the EXECUTE permission to a

specified user to function

o Revoke Execute to Function: Creates a script to revoke the EXECUTE permission to a

specified user to function

Script Wrappers

These are utility scripts that will take a script you already have and put it in an IF EXISTS or IF NOT EXISTS

wrapper. These help you create more robust scripts that perform pre-checks around your change to

limit the number of failures and roll-back changes you have as you run the scripts across your

environments. Like the script creation utility scripts, these are found in the sub-menu items for the

object type.

1. Add your custom script to the script form. Highlight the script (or portion of) that you want to be

wrapped, then select the appropriate object wrapper selection

46

2. The utility window will open up. Notice that your highlighted text has been added to the

scratchpad. Also notice that the checkbox “Insert Scratch Pad Values” is checked - this setting

means that the text in the scratchpad will be inserted inside the wrapper. Fill out the form and

click submit.

3. The utility window will close and your highlighted text with be overwritten with the updated

“wrapped” script

 Columns

o IF NOT EXISTS…Column: Puts a wrapper around a script to ensure that a column doesn’t

exist on a table prior to running the enclosed script.

o IF EXISTS…Column: Puts a wrapper around a script to ensure that a column does exist on

a table prior to running the enclosed script.

 Primary Keys

47

o Wrap Add Primary Key: Checks to make sure a primary key does not exist before running

the enclosed Primary Key add script.

 Triggers

o Wrap Add Trigger: Adds a script header to check if a trigger is pre-existing. If yes, then

the trigger is dropped. Your create script is then added after this wrapper.

 Tables

o Wrap Add Table: Checks to make sure the table you are adding does not pre-exist in the

table. If not, it falls into your add script.

 Indexes

o Wrap Add Index: Checks to make sure an index on a specific table does not exist prior to

running your enclosed script.

o Wrap Alter Index: Checks to make sure an index on a specific table does exist prior to

running your enclosed script.

 Stored Procedures

o Wrap Add/Alter Stored Procedure: Adds a script header to check if the stored procedure

is pre-existing. If yes, then the stored procedure is dropped. Your script is then added

after this wrapper.

 Functions

o Wrap Add/Alter Function: Adds a script header to check if the function is pre-existing. If

yes, then the function is dropped. Your script is then added after this wrapper.

 IF EXISTS…Object: Creates a generic query against sysobjects to see if the specified object and

type exist. If it does, it will run your enclosed script

 IF NOT EXISTS…Object: Creates a generic query against sysobjects to see if the specified object

and type exist. If it does not, it will run your enclosed script

Script Manipulation and Optimization

There are several built in routines that will modify your scripts to perform specific functions.

Optimize SELECT : Add “WITH (NOLOCK)” Directive

This routine scans through your script (just your selected section or the entire contents if nothing is

selected) and will add a WITH (NOLOCK) directive to all of your table select scripts. This is a very

important directive to add to your scripts (especially stored procedures and functions) to improve

performance. NOTE: this should only be used when a dirty read is acceptable: reports and displays for

instance, but not on important transactional selects.

48

Convert to ALTER COLUMN

This will take a simple CREATE TABLE script or selection of column definitions and modify it to a series of

ADD/ALTER column.

1. Add your CREATE TABLE script to the script window (or just the column definition sections) and

highlight it. Right-Click and select the “Convert to ALTER COLUMN” menu option

2. The program will run through its processing and produce the altered script containing an IF

EXISTS wrapper to ALTER or ADD the defined columns.

Transform to resync TABLE

This routine will make sure that a table in all of your environments match the schema of the table you

have scripted. The script created will first make sure that the specified table exists (it not, it will create

it) then perform an ADD or ALTER column script for each column you have defined. Finally (and this is

the part to be very aware of), it will iterate through the rest of the table schema and DROP any columns

that you didn’t have defined. This leaves you with the potential for data loss.

1. Add your CREATE TABLE script to the script window and highlight the text. Next, Right-Click and

select the “Transform to resync TABLE” menu option.

2. You will be presented with a warning message, just to make sure you are aware of the risks and

what will be created

3. Clicking “Yes” will process the script and produce the re-sync results.

49

Script Policy Checking
The Sql Build Manager will perform checks against your scripts at you save them or script them from the

database. These are designed to ensure that you have robust, repeatable scripts that are efficient and

optimized. If a script does not pass one or more policy checks message box describing the violation will

display. The user does have the ability to ignore the warning and continue on if they choose to do so.

Manual Policy Checking of Build Package

In addition to policy checking when first adding or saving a script in the Sql Build Manager project, you

can also run the policy checks against the entire contents of the package at once. This is accomplished

via the Tools  Script Policy Checking menu option

50

This will present you with the Script Policy Checking window. This window gives you the list of available

policies and a description of each. Be default, all of the policies are checked, but you can uncheck any

that you don’t want to run this time. Next, click the “Execute Policy Checks” buttons and the results will

appear in the bottom list. By default, failures are sorted at the top of the list. To correct violations, you

can double click on the script name in this list to open an edit window.

Grant Execute Policy

This policy checks all of your stored procedures and functions to ensure that they include at least one

GRANT EXECUTE ON <routine> TO <user or role> statement at the end. This is designed to ensure

that proper privileges are granted to the routines so that there will not be permission problems when

you deploy them.

Grant Execute to [public] Policy

Be default, SQL Server has a public role. In most cases where security is a concern, you don’t want to

use this role, but rather want to create one that has only the rights that you specify. This policy looks to

see if there is a GRANT EXECUTE ON <routine> TO [public] statement in your script and warns you if

there is.

WITH (NOLOCK) Policy

In order to ensure peak performance of your database and limit the number of locks and deadlock

potential, most SELECT queries can be run without locks (i.e. by specifying WITH (NOLOCK) for the

table). To make sure you don’t forget to add these statements, this policy validates that each table you

51

select against has this directive. Of course, there will be cases where you need to let the database take a

lock, so to accommodate this, you can instead add a token to your scripts that provide an exception to

the scripts: [NOLOCK Exception: <reason description>]. By adding this tag you tell the policy handler

that you have purposely left out NOLOCK directives and so the policy check should not fail.

Re-runable Script Policy

A robust script is one that won’t fail if it’s run more than once in the same environment. In other words,

it check to see if there is an unacceptable condition prior to being executed. In SQL, this is usually

accomplished by adding an IF EXISTS or IF NOT EXISTS wrapper or header to your script. To aid you in

doing this, the program provides methods to create these for you (see Script Creation and Script

Wrappers). If also provides a policy check to make sure that there is at least one of these checks in your

script. NOTE: This is not a fool-proof guarantee that your scripts are truly re-runable, but rather a quick

check to see if there is a statement included.

Qualified Table Names Policy

For improved performance in SQL server, you should make sure that your objects have their schema

qualifier when you reference them. <schema>.<table> This may be the standard “dbo” qualifier:

dbo.Employee or a custom schema that you have created HumanResources.Employee. This policy

checks to see that your table references all contain a schema prefix. NOTE: this is in beta as the

algorithm to try to catch all instances is more complex than you’d think. This may over-catch or under-

catch for some scripts.

Comment Header Policy

For good record keeping and change auditing, it’s great to have change comments in your routines. This

policy will check to make sure you have a fairly standard comment header included in your stored

procedure and function definitions. This policy specifically looks to make sure your definition contains

comments for: Name, Description, Author and Change History. You can easily fulfill this policy by using

the Simple Text Inserts “Insert Comment Header” utility script.

In addition, this policy check looks for “recent” comment additions to ensure that changes are being

appropriate. The threshold is different depending on how the policies are run. If you are saving an

individual script, creating a script through the Direct Database Object Scripting or updating generated

object scripts via updating object scripts feature, the tool will look for comments created either

yesterday or today. If you are running the policy checks via the Tools  Script Policy Checking menu

option, it will look for comments created within the last 40 days. The dates need to be in the

mm/dd/yyyy format.

Stored Procedure Parameter Policy

This is a configurable policy that will enforce that certain parameters be included in a defined set of

stored procedures. The configuration is set in the Enterprise / Team Settings configuration file. You can

filter your stored procedures by Schema and Target database and define the parameter check by

parameter name and parameter data type. If the policy does not find the specified parameter defined in

the signature of a stored procedure that meets the filter criteria, the script will fail the check.

52

Direct Database Object Scripting

Scripting Database Objects
Without leaving Sql Build Manager you can create SQL object scripts directly from your designated

database and add them into your Sql Build Project. You can do them one at a time, or script an entire

class of database objects all at once! Here's how...

1. Select a database to be your script source via the Scripting menu's database drop down list:

2. Once a database is selected, the next menu item list is available, where you can select the

object type:

3. Now that you've selected your object type, Sql Build Manager presents you with a list of all

objects in the source database for you to select. You can check one or more. You can also

right-click on any one of them to get a script preview of the object.

53

4. Once you've selected your objects for scripting, click the "Add Files" button and the scripts

are created. As a means to confirm the selections and give you a chance to exclude

duplicates, you next see a confirmation screen. Files that match (by file name) items already

in your build file are colored in orange. To add the checked files into your build project, click

on "Add Checked Files".

5. Lastly, you need to tell Sql Build Manager how to handle running the files against a target

database; you do this via the configuration pop-up. The same configuration will be applied

to all of the scripts you're adding in this "bulk" fashion. Check out script configuration for all

of your options

54

Updating Scripted Objects
Once you have added a database object script to your build project, what happens if you update your

database again and need to re-sync your scripts? Sql Build Manager has an answer for that as well.

Because it generates scripts with both a defined extension (.PRC, .UDF, .TAB, .VIW for stored

procedures, functions, tables and views respectively) and a pre-defined header section - it can also

determine how to update those scripts from the source.

1. Start be selecting one (or more) scripts from your project list that have the extensions listed,

and the "Update Object Create Scripts" context menu item will be enabled. From here, you

have two choices: use the settings from the original script header or use the target database

override setting (see that advanced topic).

2. Once you have selected how to re-generate the scripts, you are presented with a

confirmation window (similar to the one from the original scripting), then just click "Update

Checked Files" update the scripts in the project file.

55



3. You can also update the scripts for all scriptable objects in the project file via the

"Scripting  Update Object Create Scripts" main menu option.

Creating a “Back out Package”
There may be an instance where after you have already committed a package to an environment that

you realize something is wrong and you need to back out your changes. Since you’ve committed and you

can’t do a rollback, you could restore from a backup copy. Alternatively, you can create a back out

package that will revert your changes. Sql Build Manager can automate much of this back out creation

as long as you have an unaltered version of the database somewhere (i.e. to this BEFORE you apply your

changes to your production database!). To get started, click on the “Scripting  Create back out

package” main menu option.

56

This will open update the Backout Package form. To change your database source to an unaltered

version of your database, use the “Action  Change SQL Server Connection” menu option, selecting

both your server and database name. The selection will appear in the gray panel for reference. The two

list boxes are as follows:

“Scripts that will be updated” – these are scripts that the Sql Build Manager recognizes as having been

scripted through the tool. Because of this, it will know how to re-script them from the new target.

“Scripts that will NOT be updated” – scripts in this list fall in 1 of two categories.

 First, is “Not found on Target Server” – this means that the object in your build package hasn’t

been created on the new source. Since this is a new object, you must decide on your own what

to do with it (i.e. leave it there since it’s new and it doesn’t really matter, or create a drop script

 Second, is “Manual Scripts” – this means that the script is something you wrote, not something

the tool created for you. Because of this, you will need to determine what action needs to be

taken for a back out.

Once you have set the source server and database, reviewed this lists, and set the back out file name

(which will default to “Backout_<original package name>”, just click the “Create Back out Package”

button. If there are any errors, the back out package will not be created and you can use the “Help 

View Application Log File” link to view the errors.

57

Reporting and Adhoc Queries

Script Status Reporting
This process will check across multiple databases to see whether or not the scripts configured in your Sql

Build File (.sbm or .sbx) have been run on those databases and if they have been run, whether or not

they are in sync with the build file.

1. From the main Sql Build Manager window, select Action  Configure Multi Server/Database

Run

58

2. Configure the databases you want to generate the report against. (See Configuring Multiple

Database Targets)

3. From the opened Multiple Database Run Configuration Page, select the Reports  Script

Status Report menu item

4. The Script Status Reporting window will display.

From this window, you can select the output type you would like for the report.

Summary: A pared down report that shows only scripts that are not synchronized

between the build file and the target database and presents in an HTML document.

HTML: A full HTML report showing the status of all the scripts in the build file. Those

that are out of sync are presented in red.

CSV: A full report showing the status of all scripts in the build file.

XML: A full report of the raw data for all the scripts in the build file.

59

5. To get the report, click the Generate Report button. You will be prompted to provide a file

name to save the report output, and then the program will thread out the processing, collate

the results and present the report in the default viewer for the specified file type.

Object Comparison Report
This report option will scan your configured database and generate hash values for all of the database

objects in them. It will then create a report showing which objects are not in sync with the baseline

database chosen. NOTE: running this report may be very time consuming depending on the number of

objects in the databases and the number of databases configured for comparison.

1. From the main Sql Build Manager window, select Action  Configure Multi Server/Database

Run

2. Configure the databases you want to generate the report against. (See Configuring Multiple

Database Targets). The database that is configured with the lowest sequence number will be

used as the baseline database.

3. From the opened Multiple Database Run Configuration Page, select the Reports  Object

Comparison Report menu item

4. The Object Comparison Report form will display.

60

From this window, you can select the output type you would like for the report.

Summary: A pared down report that shows only the objects that are not synchronized

between databases. This report will present the server, database, object type, object

name and status of that object with relation to the base database.

XML: A full report of the raw data for the objects in the database

You also have the option to run the report in parallel/threaded fashion or single threaded. While

the parallel option will generally be faster, it does have the potential to impact the

responsiveness of your computer.

6. To get the report, click the Generate Report button. You will be prompted to provide a file

name to save the report output, and then the program will begin processing. The status of the

processing on each database is displayed in the table. Once complete it will collate the results

and present the report in the default viewer for the specified file type.

7. After the processing is completed, the “Additional Analysis” button is enabled. Clicking this

button will present a Comparison Analysis window where you have the ability to change the

baseline database to be any database that was used in the comparison. Selecting a database and

clicking Generate Report will create a new summary report and open it in your default HTML

viewer. Note that this option does not re-scan the databases but rather reuses the data gleaned

in the original run so there is no processing delay or performance impact.

61

Running Adhoc Queries against multiple targets
This option allows you to run any query you specify against multiple databases at once. These databases

can be spread across multiple servers as well. A report with the collated results is presented in the

format you select.

1. From the main Sql Build Manager window, select Action  Configure Multi Server/Database

Run

2. Configure the databases you want to run the Adhoc query against. (See Configuring Multiple

Database Targets)

3. From the opened Multiple Database Run Configuration Page, select the Reports  Adhoc

Query Execution menu item

62

4. The query window will display. In this window, you have the option to select the output type for

the report:

CSV - comma separated values

HTML - a formatted HTML report

XML - the raw data retrieved in XML format.

Also through the Action menu item, you can Open or Save a SQL query for reuse.

5. Once you have selected your output type and either typed in your query or opened an existing

query from a file, click the Run Script button. You will be prompted for a location and file name

to save the results then the program will then thread out the execution of the script to all of the

database targets you specified in step #2, collect the data, collate it and open the output file in

the default viewer for the specified file type. The columns included in the report are the server

name, database name, row count and then the columns specified in the query you provided.

Stored Procedure Testing

63

Stored Procedure Testing-Setup

Creating your first test configuration

1. You access the stored procedure testing module via the main screen Tools | Stored Procedure

Testing menu option

2. This will open up a new Stored Procedure Test Configuration window. To get going, you will

need to create a new test configuration. Use the File  Open/New Test Configuration menu

option to open up a file dialog window. Type in your file name and click "Open". You will now

see a "Select Database" window populated with the list of databases available on your current

server. A configuration can only address a single database, so if you need to test different stored

procedures on another database, you will need to create another configuration. Note however,

if you have two or more databases with the same stored procedures, you can use a single

configuration across those databases.

3. Now that you have your database set, you can start selecting stored procedures and creating

test cases.

Adding Stored Procedures

1. To add your first test case, right-click n the white area on the left (this is where your selected

stored procedures and test cases will soon display) and select the only active option - Add New

Stored Procedure; this will give you the Stored Procedure list:

http://sqlsync.googlepages.com/sptest-selectDb.png/sptest-selectDb-full;init:.png
http://sqlsync.googlepages.com/sptest-selectDb.png/sptest-selectDb-full;init:.png

64



2. From this list (which shows all of the user stored procedures on the target database that have

not been previously selected), check the stored procedures that you want to create test cases

for (this will eventually be all of them right?) and click "Add Checked Files".

Creating a test case

1. To create a test case, select a stored procedure from the left side list and right-click to pull up

the menu. From this menu, select "Add New Test Case to <sp name>".

65

2. This will then activate the right side, test configuration section of the screen where you can set-

up the test

Test Case Definition

1. Name - required. Sets the descriptive name of the test. This is what will appear in the tree view

on the left of the screen

2. Execution Type - required. A drop down selection of

ReturnData: expects that a result set with 1 or more columns and possibly 0-n rows returned

66

NonQuery: a stored procedure that does not return data (an insert, update or delete for

example)

Scalar: expects that the result set consists of a single data point (i.e. 1 row with 1 column)

Parameters

1. Parameters - optional based on the stored procedure. These are the parameters derived

from the stored procedure as it exists in the database. The type of each can be displayed by

hovering over the name of the parameter.

2. Parameters with "Sql Query" set - optional. This will create an array of unit tests, one for

each result set of the query. For example, if the employee table has 10 employees, and you

paste in a SQL statement "SELECT EmployeeID FROM Employees", then save and execute

the test, you will run 10 tests.

NOTE: The query should only return one column of data. Also if there are multiple

parameters, this can be used in combination to create an exponential number of tests.

Expected Results

1. Result - required. One of 4 result types must be set for the execution of the stored

procedure:

Success: The stored procedure executed properly. No exceptions were thrown by SQL

Server

GenericSqlException: If you expect that with your parameter values set, you will get

an execution exception

PKViolation: If you are forcing a Primary Key violation with your parameter values

FKViolation: If you are forcing a Foreign Key violation with your parameter values

2. Row Count -optional. If you want to check that the proper number of rows is returned with

the stored procedure, you can set this value.

3. Row Count Operator - optional. Used in conjunction with the Row Count number. It allows

you to specify that the row count be EqualTo, GreaterThan or LessThan the number

specified in the Row Count.

4. Column Count - optional. If you want to check that the proper number of rows is returned,

you can set this value.

Expected Data Output

You can add as many of these data checks as you'd like by clicking the "Add Expected Output" link

button. For each one, there are 3 settings:

1. Column Name - required. The name of the column that you would like to perform a data

value check against.

2. Value - required. The value that you expect in the designated column. NOTE: the value check

is not case sensitive and does perform a trim, so extra spaces are also ignored.

67

3. Row # - optional. The row number of the returned data that should be checked for the

value. If not specified, the first row is checked. Also, for you developers out there, this is a

"1" based value so the first row returned would be Row #1 not Row #0.

Additional Features

 Get SQL Script- generates for you the SQL that will be executed bases on the current parameter

value setting to allow you to cut and paste as needed.

 Insert Type Default Values - puts in a non-null value for each parameter. For numeric, it adds

the default value of 0. For strings and characters is adds in an empty string. For date/time, it

adds the current date and time.

 Paste Execution Script - if you use SQL server profile, you can paste in the execution script you

glean from there. The tool will parse out the parameters and values and insert them into the

proper place.

Stored Procedure Testing - Execution (Manual and Automated)
Once you have set up your stored procedure tests, you'll of course want to run them, this will explain

how to do that and also interpret the results you see.

Running your stored procedure tests (manual)

1. Execution of your tests is very straightforward. Simply check the tests you want to run (or use

the "Check All" link) and click the "Run Checked Test" button. An execution/results window will

open up and the tests will automatically start.

Interpreting the results

1. The tool will run through all of the tests you had checked, logging the results for each test and

displaying the summary results in the execution window

http://sqlsync.googlepages.com/storedproceduretesting
http://sqlsync.googlepages.com/sptest-run.png/sptest-run-full;init:.png

68

2. For each test run, you will get a result row, with an success/failure indicator, the stored

procedure name, the test case name and the results summary.(Note: if there is a failure, the

row will be highlighted in red). There is also a summary across the bottom, listing the number of

stored procedures that were tested, the number of test cases executed, the number passed and

the number failed.

3. To view the result details of the test, you can right-click on the results row and select "Show

Detailed Results". The detail window will pop-up. In the top section you will get the same

information as the summary, however the results is now fully displayed showing all of the

criteria that were used in the test and the actual results retrieved. In the bottom section, the

actual SQL that was executed is shown in case you need to retrieve it for another use.

Saving the results

If you need to save your results for later review or for proof of testing, you can do that too. From the

results summary page, you can right-click and display the menu. Select the "Save All Test Results". The

resulting file will be an XML document that contains all of the detailed information regarding the test

http://sqlsync.googlepages.com/sptest-results.png/sptest-results-full;init:.png
http://sqlsync.googlepages.com/sptest-result-detail.png/sptest-result-detail-full;init:.png
http://sqlsync.googlepages.com/sptest-results.png/sptest-results-full;init:.png
http://sqlsync.googlepages.com/sptest-result-detail.png/sptest-result-detail-full;init:.png

69

execution that you can get via the forms above, plus the name of the target server, target database, and

start and end times. Also, the test case definition is included with each result.

Automating stored procedure testing
You can easily automate your stored procedure testing by taking advantage of the console helper

executable and command-line execution. Running a stored procedure test, you will need 4 command

line parameters:

 /test=".sptest config file" - informs the tool that you will be performing a stored

procedure test execution using the supplied test configuration file.

 /server=serverName - sets the target server to connect to

 /database=target server - sets the target database to run the stored procedures on

 /log=logfilename.xml - sets the name of the XML results file you want the results sent to.

Example: SqlBuildManager.Console.exe /test="test3.sptest" /server=myserver /database=myDb

/log="C:\logfile.xml"

Additional Program Information

Associated File Types
The application has multiple file types associated with it at install time. These files serve many purposes

for different features of the application.

 .sbm : Single file package that contain the scripts, script metadata and run result history

for the package.

 .sbx : XML configuration file. This contains the script metadata for run time settings. The

scripts are assumed to be in the same folder as the .sbx file. This file can be packaged into a

single .sbm file via the Action  Package Scripts into Project File (.sbm) menu option.

http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png
http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png
http://sqlsync.googlepages.com/sptest-save.png/sptest-save-full;init:.png

70

 .sbe : A “Sql Build Export” file. The product of an export of scripts from a .sbm file. This is

essentially the same as a .sbm file, but is used to denote scripts that are intended to be

imported into another sbm file.

71

 .multiDb : Multi-database execution configuration file. See Configuring Multiple Database

Targets.

 .multiDbQ : Multi-database configuration query file. See Create Configuration via Query

 .audit : a auditing script creation template file. These files are used to create a group of

tables that require data auditing. The program can then generate audit tables and triggers for

these tables.

 .sqlauto : a configuration file for automated schema scripting. This can be used for

creating a scheduled task to generate DDL scripts for databases on a regular basis

 .sts : Sql Table Scripting. A configuration file of “look-up” or “code tables”. From this, the

program can create script files that can be used to replicate their contents to other

environments. These scripts are re-runable and handle both inserts and updates of values.

 .sptest : Stored Procedure test configuration file. With not programming, the application

can create unit tests for stored procedures. You can supply standard or query based input values

and interrogate execution times and return values to determine pass/fail criteria.

Database Analysis
Sql Build Manager has the built in features to run size and utilization analysis against a SQL server.

72

Server Analysis
1. Upon selecting the Tools  Database Analysis menu option, the Database Size Summary

window will open. On loading, it will begin scanning the current server (as identified in both the

title bar and the “Recent Servers” drop down box to gather the data.

2. Once the scan is complete, you the grid will be populated with four pieces of data for each

database associated with the server:

 Database Name – fairly obvious!

 Date Created/Last Restore – this is the date that the associated master database has for

the creation date of the database. This date is updated whenever a database is restored

from a back-up as well

 Size (MB) – again, fairly obvious. This is the size that SQL Server has allocated for the

database MDF file.

 Location – The physical drive path where the MDF file is located. Note that the path is

relative to the SQL Server, not your local machine.

3. You can run analysis on another server by changing the database selection in the “Recent

Servers” drop down

Individual Database Details
1. From the Database Size Summary form, you can gather individual database details by right-

clicking on the database and selecting the Get Database Details menu item.

2. The size analysis for the selected database will run and load the data form. This contains data

about each table in the database. (These columns are all sortable)

73

 Table Name – obvious.

 Row Count – the number of rows that SQL Server currently reports from its statistics

(not always the same as a “SELECT count(*)…” query, but generally very close

 Data – the size of the data stored in the table (in KB)

 Indexes - the size of all of the indexes associated with the table (in KB)

 Unused – the amount of space that is allocated to the table but it currently empty (in

KB)

 Total – the total amount of space that SQL Server has allocated for this table and all of

its indexes

 Average Data – the average amount of space used per row in the table

 Average Index – the average amount of space used per row for all of the indexes on the

table

Data Extraction and Insertion
Sql Build Manager has the ability to extract non-binary data out of a table and store it in a formatted file.

Conversely, it can take this formatted data and create pairs if INSERT/UPDATE statements for reinsertion

and or updating of this data. It can also be used to synchronize data between environments.

NOTE: There is a current limitation with this extract. It will not properly handle data that contains in-line

carriage returns. This will cause a formatting error of the insert/update scripts.

Data Extraction
1. Open the Data Extraction form via the Tools  Data Extraction menu item from the main

window

74

2. On the Data Extract window, you will need to do the following:

a. Select your output directory via the Action  Change Destination Folder menu .

b. Select your source database with the “Select Database” dropdown list. (You can change

your server via the Action Change SQL Server Connection menu item or the Recent

Servers list)

c. Once you select the database, the Tables to Script list will populate with the table list

for that database as well as the row count for each table.

d. Next, check the tables you want to extract from and click the “Extract Data” link.

e. The files that were created display in the “Extract Results” list. If you want to open a

file, you can right-click on it and select “Open File”.

Data Insertion Script Creation
Once you have extracted data, what are you to do with it? Well, you can always generate scripts to put it

back! This is useful create a restore for a table and also to move data easily from one environment to

75

another. In order to get it back into a table, you’ll need to create the INSERT/UPDATE script

combinations for the extracted data.

1. Open the Data Extract Script Creation Form via the Tools  Create Scripts from Extracted

Data menu option.

2. Open a data extract file (*.data) via the Action  Open Data Extract File menu item. Once you

select the file, its contents will be loaded into the top text box and the script creation process

will be kicked off. The generated scripts are displayed in the bottom text box. These scripts are

suitable to be copied and pasted into a Sql Build Manager project file or SQL management

studio window for execution.

Database Object Validation
Do you know if your database views, stored procedures and functions are all in sync? Are all of your

table references correct? This functionality attempts to scan your database and alert you of potential

errors – before you find them at runtime. The validation consists of the following checks:

76

 Execution of sp_helptext system procedure for the objects: This checks to ensure that there is no

discrepancy in the object registration in the database

 SQL parsing: Runs a SQL server query parse for the object definition. This uses SQL server’s built-

in functionality to run through the definition and check for the validity of referenced tables,

columns, views, etc

 Execution of sp_depends system stored procedure for the objects: Another means for SQL Server

to check the validity of table references. NOTE: If there is a cross-database join. SQL server will

not necessarily detect the dependency, in which case the validation will return a status alerting

you of such.

1. Open the Database Object Validation form using the Tools  Database Object Validation

menu item.

2. On the form, select the database you want to check in the database dropdown list. (You can also

change your SQL Server connection via the Action  Change Sql Server Connection menu

option or Recent Servers list).

3. The list will populate with the checked Stored Procedures (type ‘P’), Function (type ‘FN’) and

Views (type ‘V’). There are 4 status types that you can get in the result:

a. Valid – self explanatory. The object passes the validation tests

b. Invalid – again, self explanatory. The object fails one of the validations. You will get a

detail of the failure in the Results column.

c. Caution – a warning. This doesn’t necessarily mean that the object is invalid, but will let

you know what to look for in the Results column.

77

d. Cross Database Join – another warning. The tool detected a possible join across

databases and lets you now that is could not fully validate the references.

If there are any items that do not return a Valid status, the warning message will display.

Rebuilding Previously Committed Build Packages
One of the useful features of the logging that Sql Build Manager performs is that it allows the tool to

also reverse engineer a build package that has been committed to a database (or combination of

databases). This allows you to re-create a package with all of the scripts of the original to archive off, or

run against another environment.

1. Open the Rebuild Sql Build Manager File form with the Tools  Rebuild Previously

Committed Build File menu item

2. When the form opens, it will automatically scan the server you are connected to. It will populate

the table with all of the build files that it found, originally sorted in reverse chronological order.

Also in the list are the database(s) that the build file was run against, and the number of scripts

that were included in the file. You can change the server via the Action  Changes Sql Server

Connection or Recent Servers drop down

3. Once you pick a build file to reconstruct, select it in the list, then right-click and select Rebuild

File context menu item. You will then be prompted where to save the file.

78

4. After the rebuild is completed, you will be prompted whether or not you want to open this new

file. Selecting “Yes” will… you guessed it… open the file

5. Once the file opens, you will notice that all of the scripts are marked as “Run Once”. This may or

may not have been the original setting. The logging does not record your runtime settings, so it

defaults to the “safest” setting. You can however, update these settings as needed for you to

reuse the package.

Enterprise / Team Settings
This feature in Sql Build Manager allows you to manage certain settings for a team, rather than having

an isolated/ per installation settings. This is managed by a settings configuration file that needs to be

accessible by all of your users.

Enterprise/Team Settings Configuration File

The team settings are controlled via a common configuration file that each installation can read from.

This can be handled via either placing this file in a common file share or making it available via an http

URL. If for some reason the file is not readable, the tool will use settings it was last able to retrieve. The

configuration file in an XML formatted file conforming to a specific XSD schema (this schema is called

EnterpriseConfiguration.xsd and can be found in your installation folder).

79

appSettings Key/Value Pair

To point your Sql Build Manager installation to the team configuration file, you will need to edit the

application configuration file Sql Build Manager.exe.config. In this file add or edit the appSettings

section’s key “Enterprise.ConfigFileLoation” and set the value to either a file share location, UNC path,

or HTTP URL where you team settings file can be found. Upon restarting the application, it will now use

this file for team settings.

Script Change Settings

Table Change Watch

This team setting lets you put “alerts” on table changes. It detects ALTER TABLE and DROP TABLE change

scripts upon saving from the Edit Script Text window. It then compares these table change scripts

against a list of tables that are being “watched”. If there is a match, the alert window is displayed. This

window gives the following information:

 Notice that this is a Table Change Watch, what it is and how to send the notification

 A description of the alert – should explain what the alert is for

 A list of tables modified – list the tables altered in your script that matched an item in the watch

list

 A list of folks that wanted the alert.

To give these folks their notice, you’ll need to click the “Send Notification” button (for each alert box if

there is more than one). This will open your default e-mail program with a configured, populated e-mail

– just click “Send”.

80

Configuring Table Change Watch

The file can contain one or more <TableWatch> elements and each of these can contain one or more

Table and Notify elements. You can use any XML editor to help you create the file, but one that can

validate against the schema will be the most helpful.

Script Policy Settings
Script policies are enforced via configuration so you can turn them on and off as needed. This is handled

via <ScriptPolicy> elements in the EnterpriseConfiguration.xml file. Each script policy will have its own

element and PolicyId value. You can turn off policy enforcement by either removing the element or

setting the Enforce attribute value to false.

The current list of PolicyId’s is:

 CommentHeaderPolicy

 ConstraintNamePolicy

 GrantExecutePolicy

 GrantExecuteToPublicPolicy

 QualifiedNamesPolicy

 ReRunablePolicy

 SelectStarPolicy

 StoredProcParameterPolicy

81

 WithNoLockPolicy

The StoredProcParameterPolicy is additionally configurable with 4 “Arguments” that are added via

<Argument> sub-elements. The allowed argument names are:

 Schema – a stored procedure filter setting. Selects the schema that the stored procedure must

belong to in order to “match” for the policy check.

 TargetDatabase – a stored procedure filter setting. The target database that the stored

procedure needs to be targeted toward in order to “match for the policy check.

 Parameter – the name of the stored procedure parameter (with the “@”) that you want to make

sure is included in the stored procedure signatures.

 SqlType – the SQL type of the parameter that you want to make sure is included in the stored

procedure signatures.

Feature Access Settings
There is the ability to activate/deactivate features by user. Currently, the only feature that is under

control is the access to the Remote Execution Service. The <FeatureAccess> element contains both a

FeatureId attribute (currently, only “RemoteExecution” is valid) and a Boolean value of Enabled. A sub-

element of <Allow> takes a LoginId value that should be set to the userid of the user that has access to

the particular feature.

